| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fcobijfs2.1 |
⊢ ( 𝜑 → 𝐺 : 𝑅 –1-1-onto→ 𝑆 ) |
| 2 |
|
fcobijfs2.2 |
⊢ ( 𝜑 → 𝑅 ∈ 𝑈 ) |
| 3 |
|
fcobijfs2.3 |
⊢ ( 𝜑 → 𝑆 ∈ 𝑉 ) |
| 4 |
|
fcobijfs2.4 |
⊢ ( 𝜑 → 𝑇 ∈ 𝑊 ) |
| 5 |
|
fcobijfs2.5 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑇 ) |
| 6 |
|
fcobijfs2.7 |
⊢ 𝑋 = { 𝑔 ∈ ( 𝑇 ↑m 𝑆 ) ∣ 𝑔 finSupp 𝑂 } |
| 7 |
|
fcobijfs2.8 |
⊢ 𝑌 = { ℎ ∈ ( 𝑇 ↑m 𝑅 ) ∣ ℎ finSupp 𝑂 } |
| 8 |
|
breq1 |
⊢ ( ℎ = 𝑔 → ( ℎ finSupp 𝑂 ↔ 𝑔 finSupp 𝑂 ) ) |
| 9 |
8
|
cbvrabv |
⊢ { ℎ ∈ ( 𝑇 ↑m 𝑆 ) ∣ ℎ finSupp 𝑂 } = { 𝑔 ∈ ( 𝑇 ↑m 𝑆 ) ∣ 𝑔 finSupp 𝑂 } |
| 10 |
6 9
|
eqtr4i |
⊢ 𝑋 = { ℎ ∈ ( 𝑇 ↑m 𝑆 ) ∣ ℎ finSupp 𝑂 } |
| 11 |
|
eqid |
⊢ { ℎ ∈ ( 𝑇 ↑m 𝑅 ) ∣ ℎ finSupp ( ( I ↾ 𝑇 ) ‘ 𝑂 ) } = { ℎ ∈ ( 𝑇 ↑m 𝑅 ) ∣ ℎ finSupp ( ( I ↾ 𝑇 ) ‘ 𝑂 ) } |
| 12 |
|
eqid |
⊢ ( ( I ↾ 𝑇 ) ‘ 𝑂 ) = ( ( I ↾ 𝑇 ) ‘ 𝑂 ) |
| 13 |
|
f1oi |
⊢ ( I ↾ 𝑇 ) : 𝑇 –1-1-onto→ 𝑇 |
| 14 |
13
|
a1i |
⊢ ( 𝜑 → ( I ↾ 𝑇 ) : 𝑇 –1-1-onto→ 𝑇 ) |
| 15 |
10 11 12 1 14 3 4 2 4 5
|
mapfien |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝑋 ↦ ( ( I ↾ 𝑇 ) ∘ ( 𝑓 ∘ 𝐺 ) ) ) : 𝑋 –1-1-onto→ { ℎ ∈ ( 𝑇 ↑m 𝑅 ) ∣ ℎ finSupp ( ( I ↾ 𝑇 ) ‘ 𝑂 ) } ) |
| 16 |
|
fvresi |
⊢ ( 𝑂 ∈ 𝑇 → ( ( I ↾ 𝑇 ) ‘ 𝑂 ) = 𝑂 ) |
| 17 |
5 16
|
syl |
⊢ ( 𝜑 → ( ( I ↾ 𝑇 ) ‘ 𝑂 ) = 𝑂 ) |
| 18 |
17
|
breq2d |
⊢ ( 𝜑 → ( ℎ finSupp ( ( I ↾ 𝑇 ) ‘ 𝑂 ) ↔ ℎ finSupp 𝑂 ) ) |
| 19 |
18
|
rabbidv |
⊢ ( 𝜑 → { ℎ ∈ ( 𝑇 ↑m 𝑅 ) ∣ ℎ finSupp ( ( I ↾ 𝑇 ) ‘ 𝑂 ) } = { ℎ ∈ ( 𝑇 ↑m 𝑅 ) ∣ ℎ finSupp 𝑂 } ) |
| 20 |
19 7
|
eqtr4di |
⊢ ( 𝜑 → { ℎ ∈ ( 𝑇 ↑m 𝑅 ) ∣ ℎ finSupp ( ( I ↾ 𝑇 ) ‘ 𝑂 ) } = 𝑌 ) |
| 21 |
15 20
|
f1oeq3dd |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝑋 ↦ ( ( I ↾ 𝑇 ) ∘ ( 𝑓 ∘ 𝐺 ) ) ) : 𝑋 –1-1-onto→ 𝑌 ) |
| 22 |
6
|
ssrab3 |
⊢ 𝑋 ⊆ ( 𝑇 ↑m 𝑆 ) |
| 23 |
22
|
sseli |
⊢ ( 𝑓 ∈ 𝑋 → 𝑓 ∈ ( 𝑇 ↑m 𝑆 ) ) |
| 24 |
|
elmapi |
⊢ ( 𝑓 ∈ ( 𝑇 ↑m 𝑆 ) → 𝑓 : 𝑆 ⟶ 𝑇 ) |
| 25 |
|
f1of |
⊢ ( 𝐺 : 𝑅 –1-1-onto→ 𝑆 → 𝐺 : 𝑅 ⟶ 𝑆 ) |
| 26 |
1 25
|
syl |
⊢ ( 𝜑 → 𝐺 : 𝑅 ⟶ 𝑆 ) |
| 27 |
|
fco |
⊢ ( ( 𝑓 : 𝑆 ⟶ 𝑇 ∧ 𝐺 : 𝑅 ⟶ 𝑆 ) → ( 𝑓 ∘ 𝐺 ) : 𝑅 ⟶ 𝑇 ) |
| 28 |
24 26 27
|
syl2anr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑇 ↑m 𝑆 ) ) → ( 𝑓 ∘ 𝐺 ) : 𝑅 ⟶ 𝑇 ) |
| 29 |
|
fcoi2 |
⊢ ( ( 𝑓 ∘ 𝐺 ) : 𝑅 ⟶ 𝑇 → ( ( I ↾ 𝑇 ) ∘ ( 𝑓 ∘ 𝐺 ) ) = ( 𝑓 ∘ 𝐺 ) ) |
| 30 |
28 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( 𝑇 ↑m 𝑆 ) ) → ( ( I ↾ 𝑇 ) ∘ ( 𝑓 ∘ 𝐺 ) ) = ( 𝑓 ∘ 𝐺 ) ) |
| 31 |
23 30
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ 𝑋 ) → ( ( I ↾ 𝑇 ) ∘ ( 𝑓 ∘ 𝐺 ) ) = ( 𝑓 ∘ 𝐺 ) ) |
| 32 |
31
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝑋 ↦ ( ( I ↾ 𝑇 ) ∘ ( 𝑓 ∘ 𝐺 ) ) ) = ( 𝑓 ∈ 𝑋 ↦ ( 𝑓 ∘ 𝐺 ) ) ) |
| 33 |
32
|
f1oeq1d |
⊢ ( 𝜑 → ( ( 𝑓 ∈ 𝑋 ↦ ( ( I ↾ 𝑇 ) ∘ ( 𝑓 ∘ 𝐺 ) ) ) : 𝑋 –1-1-onto→ 𝑌 ↔ ( 𝑓 ∈ 𝑋 ↦ ( 𝑓 ∘ 𝐺 ) ) : 𝑋 –1-1-onto→ 𝑌 ) ) |
| 34 |
21 33
|
mpbid |
⊢ ( 𝜑 → ( 𝑓 ∈ 𝑋 ↦ ( 𝑓 ∘ 𝐺 ) ) : 𝑋 –1-1-onto→ 𝑌 ) |