Metamath Proof Explorer


Theorem fcobijfs2

Description: Composing finitely supported functions with a bijection yields a bijection between sets of finitely supported functions. See also fcobijfs and mapfien . (Contributed by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses fcobijfs2.1 ( 𝜑𝐺 : 𝑅1-1-onto𝑆 )
fcobijfs2.2 ( 𝜑𝑅𝑈 )
fcobijfs2.3 ( 𝜑𝑆𝑉 )
fcobijfs2.4 ( 𝜑𝑇𝑊 )
fcobijfs2.5 ( 𝜑𝑂𝑇 )
fcobijfs2.7 𝑋 = { 𝑔 ∈ ( 𝑇m 𝑆 ) ∣ 𝑔 finSupp 𝑂 }
fcobijfs2.8 𝑌 = { ∈ ( 𝑇m 𝑅 ) ∣ finSupp 𝑂 }
Assertion fcobijfs2 ( 𝜑 → ( 𝑓𝑋 ↦ ( 𝑓𝐺 ) ) : 𝑋1-1-onto𝑌 )

Proof

Step Hyp Ref Expression
1 fcobijfs2.1 ( 𝜑𝐺 : 𝑅1-1-onto𝑆 )
2 fcobijfs2.2 ( 𝜑𝑅𝑈 )
3 fcobijfs2.3 ( 𝜑𝑆𝑉 )
4 fcobijfs2.4 ( 𝜑𝑇𝑊 )
5 fcobijfs2.5 ( 𝜑𝑂𝑇 )
6 fcobijfs2.7 𝑋 = { 𝑔 ∈ ( 𝑇m 𝑆 ) ∣ 𝑔 finSupp 𝑂 }
7 fcobijfs2.8 𝑌 = { ∈ ( 𝑇m 𝑅 ) ∣ finSupp 𝑂 }
8 breq1 ( = 𝑔 → ( finSupp 𝑂𝑔 finSupp 𝑂 ) )
9 8 cbvrabv { ∈ ( 𝑇m 𝑆 ) ∣ finSupp 𝑂 } = { 𝑔 ∈ ( 𝑇m 𝑆 ) ∣ 𝑔 finSupp 𝑂 }
10 6 9 eqtr4i 𝑋 = { ∈ ( 𝑇m 𝑆 ) ∣ finSupp 𝑂 }
11 eqid { ∈ ( 𝑇m 𝑅 ) ∣ finSupp ( ( I ↾ 𝑇 ) ‘ 𝑂 ) } = { ∈ ( 𝑇m 𝑅 ) ∣ finSupp ( ( I ↾ 𝑇 ) ‘ 𝑂 ) }
12 eqid ( ( I ↾ 𝑇 ) ‘ 𝑂 ) = ( ( I ↾ 𝑇 ) ‘ 𝑂 )
13 f1oi ( I ↾ 𝑇 ) : 𝑇1-1-onto𝑇
14 13 a1i ( 𝜑 → ( I ↾ 𝑇 ) : 𝑇1-1-onto𝑇 )
15 10 11 12 1 14 3 4 2 4 5 mapfien ( 𝜑 → ( 𝑓𝑋 ↦ ( ( I ↾ 𝑇 ) ∘ ( 𝑓𝐺 ) ) ) : 𝑋1-1-onto→ { ∈ ( 𝑇m 𝑅 ) ∣ finSupp ( ( I ↾ 𝑇 ) ‘ 𝑂 ) } )
16 fvresi ( 𝑂𝑇 → ( ( I ↾ 𝑇 ) ‘ 𝑂 ) = 𝑂 )
17 5 16 syl ( 𝜑 → ( ( I ↾ 𝑇 ) ‘ 𝑂 ) = 𝑂 )
18 17 breq2d ( 𝜑 → ( finSupp ( ( I ↾ 𝑇 ) ‘ 𝑂 ) ↔ finSupp 𝑂 ) )
19 18 rabbidv ( 𝜑 → { ∈ ( 𝑇m 𝑅 ) ∣ finSupp ( ( I ↾ 𝑇 ) ‘ 𝑂 ) } = { ∈ ( 𝑇m 𝑅 ) ∣ finSupp 𝑂 } )
20 19 7 eqtr4di ( 𝜑 → { ∈ ( 𝑇m 𝑅 ) ∣ finSupp ( ( I ↾ 𝑇 ) ‘ 𝑂 ) } = 𝑌 )
21 15 20 f1oeq3dd ( 𝜑 → ( 𝑓𝑋 ↦ ( ( I ↾ 𝑇 ) ∘ ( 𝑓𝐺 ) ) ) : 𝑋1-1-onto𝑌 )
22 6 ssrab3 𝑋 ⊆ ( 𝑇m 𝑆 )
23 22 sseli ( 𝑓𝑋𝑓 ∈ ( 𝑇m 𝑆 ) )
24 elmapi ( 𝑓 ∈ ( 𝑇m 𝑆 ) → 𝑓 : 𝑆𝑇 )
25 f1of ( 𝐺 : 𝑅1-1-onto𝑆𝐺 : 𝑅𝑆 )
26 1 25 syl ( 𝜑𝐺 : 𝑅𝑆 )
27 fco ( ( 𝑓 : 𝑆𝑇𝐺 : 𝑅𝑆 ) → ( 𝑓𝐺 ) : 𝑅𝑇 )
28 24 26 27 syl2anr ( ( 𝜑𝑓 ∈ ( 𝑇m 𝑆 ) ) → ( 𝑓𝐺 ) : 𝑅𝑇 )
29 fcoi2 ( ( 𝑓𝐺 ) : 𝑅𝑇 → ( ( I ↾ 𝑇 ) ∘ ( 𝑓𝐺 ) ) = ( 𝑓𝐺 ) )
30 28 29 syl ( ( 𝜑𝑓 ∈ ( 𝑇m 𝑆 ) ) → ( ( I ↾ 𝑇 ) ∘ ( 𝑓𝐺 ) ) = ( 𝑓𝐺 ) )
31 23 30 sylan2 ( ( 𝜑𝑓𝑋 ) → ( ( I ↾ 𝑇 ) ∘ ( 𝑓𝐺 ) ) = ( 𝑓𝐺 ) )
32 31 mpteq2dva ( 𝜑 → ( 𝑓𝑋 ↦ ( ( I ↾ 𝑇 ) ∘ ( 𝑓𝐺 ) ) ) = ( 𝑓𝑋 ↦ ( 𝑓𝐺 ) ) )
33 32 f1oeq1d ( 𝜑 → ( ( 𝑓𝑋 ↦ ( ( I ↾ 𝑇 ) ∘ ( 𝑓𝐺 ) ) ) : 𝑋1-1-onto𝑌 ↔ ( 𝑓𝑋 ↦ ( 𝑓𝐺 ) ) : 𝑋1-1-onto𝑌 ) )
34 21 33 mpbid ( 𝜑 → ( 𝑓𝑋 ↦ ( 𝑓𝐺 ) ) : 𝑋1-1-onto𝑌 )