Metamath Proof Explorer


Theorem fcobijfs

Description: Composing finitely supported functions with a bijection yields a bijection between sets of finitely supported functions. See also mapfien . (Contributed by Thierry Arnoux, 25-Aug-2017) (Revised by Thierry Arnoux, 1-Sep-2019)

Ref Expression
Hypotheses fcobij.1 ( 𝜑𝐺 : 𝑆1-1-onto𝑇 )
fcobij.2 ( 𝜑𝑅𝑈 )
fcobij.3 ( 𝜑𝑆𝑉 )
fcobij.4 ( 𝜑𝑇𝑊 )
fcobijfs.5 ( 𝜑𝑂𝑆 )
fcobijfs.6 𝑄 = ( 𝐺𝑂 )
fcobijfs.7 𝑋 = { 𝑔 ∈ ( 𝑆m 𝑅 ) ∣ 𝑔 finSupp 𝑂 }
fcobijfs.8 𝑌 = { ∈ ( 𝑇m 𝑅 ) ∣ finSupp 𝑄 }
Assertion fcobijfs ( 𝜑 → ( 𝑓𝑋 ↦ ( 𝐺𝑓 ) ) : 𝑋1-1-onto𝑌 )

Proof

Step Hyp Ref Expression
1 fcobij.1 ( 𝜑𝐺 : 𝑆1-1-onto𝑇 )
2 fcobij.2 ( 𝜑𝑅𝑈 )
3 fcobij.3 ( 𝜑𝑆𝑉 )
4 fcobij.4 ( 𝜑𝑇𝑊 )
5 fcobijfs.5 ( 𝜑𝑂𝑆 )
6 fcobijfs.6 𝑄 = ( 𝐺𝑂 )
7 fcobijfs.7 𝑋 = { 𝑔 ∈ ( 𝑆m 𝑅 ) ∣ 𝑔 finSupp 𝑂 }
8 fcobijfs.8 𝑌 = { ∈ ( 𝑇m 𝑅 ) ∣ finSupp 𝑄 }
9 breq1 ( = 𝑔 → ( finSupp 𝑂𝑔 finSupp 𝑂 ) )
10 9 cbvrabv { ∈ ( 𝑆m 𝑅 ) ∣ finSupp 𝑂 } = { 𝑔 ∈ ( 𝑆m 𝑅 ) ∣ 𝑔 finSupp 𝑂 }
11 7 10 eqtr4i 𝑋 = { ∈ ( 𝑆m 𝑅 ) ∣ finSupp 𝑂 }
12 f1oi ( I ↾ 𝑅 ) : 𝑅1-1-onto𝑅
13 12 a1i ( 𝜑 → ( I ↾ 𝑅 ) : 𝑅1-1-onto𝑅 )
14 11 8 6 13 1 2 3 2 4 5 mapfien ( 𝜑 → ( 𝑓𝑋 ↦ ( 𝐺 ∘ ( 𝑓 ∘ ( I ↾ 𝑅 ) ) ) ) : 𝑋1-1-onto𝑌 )
15 7 ssrab3 𝑋 ⊆ ( 𝑆m 𝑅 )
16 15 sseli ( 𝑓𝑋𝑓 ∈ ( 𝑆m 𝑅 ) )
17 coass ( ( 𝐺𝑓 ) ∘ ( I ↾ 𝑅 ) ) = ( 𝐺 ∘ ( 𝑓 ∘ ( I ↾ 𝑅 ) ) )
18 f1of ( 𝐺 : 𝑆1-1-onto𝑇𝐺 : 𝑆𝑇 )
19 1 18 syl ( 𝜑𝐺 : 𝑆𝑇 )
20 elmapi ( 𝑓 ∈ ( 𝑆m 𝑅 ) → 𝑓 : 𝑅𝑆 )
21 fco ( ( 𝐺 : 𝑆𝑇𝑓 : 𝑅𝑆 ) → ( 𝐺𝑓 ) : 𝑅𝑇 )
22 19 20 21 syl2an ( ( 𝜑𝑓 ∈ ( 𝑆m 𝑅 ) ) → ( 𝐺𝑓 ) : 𝑅𝑇 )
23 fcoi1 ( ( 𝐺𝑓 ) : 𝑅𝑇 → ( ( 𝐺𝑓 ) ∘ ( I ↾ 𝑅 ) ) = ( 𝐺𝑓 ) )
24 22 23 syl ( ( 𝜑𝑓 ∈ ( 𝑆m 𝑅 ) ) → ( ( 𝐺𝑓 ) ∘ ( I ↾ 𝑅 ) ) = ( 𝐺𝑓 ) )
25 17 24 eqtr3id ( ( 𝜑𝑓 ∈ ( 𝑆m 𝑅 ) ) → ( 𝐺 ∘ ( 𝑓 ∘ ( I ↾ 𝑅 ) ) ) = ( 𝐺𝑓 ) )
26 16 25 sylan2 ( ( 𝜑𝑓𝑋 ) → ( 𝐺 ∘ ( 𝑓 ∘ ( I ↾ 𝑅 ) ) ) = ( 𝐺𝑓 ) )
27 26 mpteq2dva ( 𝜑 → ( 𝑓𝑋 ↦ ( 𝐺 ∘ ( 𝑓 ∘ ( I ↾ 𝑅 ) ) ) ) = ( 𝑓𝑋 ↦ ( 𝐺𝑓 ) ) )
28 f1oeq1 ( ( 𝑓𝑋 ↦ ( 𝐺 ∘ ( 𝑓 ∘ ( I ↾ 𝑅 ) ) ) ) = ( 𝑓𝑋 ↦ ( 𝐺𝑓 ) ) → ( ( 𝑓𝑋 ↦ ( 𝐺 ∘ ( 𝑓 ∘ ( I ↾ 𝑅 ) ) ) ) : 𝑋1-1-onto𝑌 ↔ ( 𝑓𝑋 ↦ ( 𝐺𝑓 ) ) : 𝑋1-1-onto𝑌 ) )
29 27 28 syl ( 𝜑 → ( ( 𝑓𝑋 ↦ ( 𝐺 ∘ ( 𝑓 ∘ ( I ↾ 𝑅 ) ) ) ) : 𝑋1-1-onto𝑌 ↔ ( 𝑓𝑋 ↦ ( 𝐺𝑓 ) ) : 𝑋1-1-onto𝑌 ) )
30 14 29 mpbid ( 𝜑 → ( 𝑓𝑋 ↦ ( 𝐺𝑓 ) ) : 𝑋1-1-onto𝑌 )