Metamath Proof Explorer


Theorem mplvrpmlem

Description: Lemma for mplvrpmga and others. (Contributed by Thierry Arnoux, 11-Jan-2026)

Ref Expression
Hypotheses mplvrpmlem.s S = SymGrp I
mplvrpmlem.p P = Base S
mplvrpmlem.i φ I V
mplvrpmlem.d φ D P
mplvrpmlem.1 φ X h 0 I | finSupp 0 h
Assertion mplvrpmlem φ X D h 0 I | finSupp 0 h

Proof

Step Hyp Ref Expression
1 mplvrpmlem.s S = SymGrp I
2 mplvrpmlem.p P = Base S
3 mplvrpmlem.i φ I V
4 mplvrpmlem.d φ D P
5 mplvrpmlem.1 φ X h 0 I | finSupp 0 h
6 breq1 h = X D finSupp 0 h finSupp 0 X D
7 nn0ex 0 V
8 7 a1i φ 0 V
9 ssrab2 h 0 I | finSupp 0 h 0 I
10 9 5 sselid φ X 0 I
11 3 8 10 elmaprd φ X : I 0
12 1 2 symgbasf1o D P D : I 1-1 onto I
13 4 12 syl φ D : I 1-1 onto I
14 f1of D : I 1-1 onto I D : I I
15 13 14 syl φ D : I I
16 11 15 fcod φ X D : I 0
17 8 3 16 elmapdd φ X D 0 I
18 breq1 h = X finSupp 0 h finSupp 0 X
19 18 elrab X h 0 I | finSupp 0 h X 0 I finSupp 0 X
20 19 simprbi X h 0 I | finSupp 0 h finSupp 0 X
21 5 20 syl φ finSupp 0 X
22 f1of1 D : I 1-1 onto I D : I 1-1 I
23 13 22 syl φ D : I 1-1 I
24 0nn0 0 0
25 24 a1i φ 0 0
26 21 23 25 5 fsuppco φ finSupp 0 X D
27 6 17 26 elrabd φ X D h 0 I | finSupp 0 h