Metamath Proof Explorer


Theorem mplvrpmlem

Description: Lemma for mplvrpmga and others. (Contributed by Thierry Arnoux, 11-Jan-2026)

Ref Expression
Hypotheses mplvrpmlem.s
|- S = ( SymGrp ` I )
mplvrpmlem.p
|- P = ( Base ` S )
mplvrpmlem.i
|- ( ph -> I e. V )
mplvrpmlem.d
|- ( ph -> D e. P )
mplvrpmlem.1
|- ( ph -> X e. { h e. ( NN0 ^m I ) | h finSupp 0 } )
Assertion mplvrpmlem
|- ( ph -> ( X o. D ) e. { h e. ( NN0 ^m I ) | h finSupp 0 } )

Proof

Step Hyp Ref Expression
1 mplvrpmlem.s
 |-  S = ( SymGrp ` I )
2 mplvrpmlem.p
 |-  P = ( Base ` S )
3 mplvrpmlem.i
 |-  ( ph -> I e. V )
4 mplvrpmlem.d
 |-  ( ph -> D e. P )
5 mplvrpmlem.1
 |-  ( ph -> X e. { h e. ( NN0 ^m I ) | h finSupp 0 } )
6 breq1
 |-  ( h = ( X o. D ) -> ( h finSupp 0 <-> ( X o. D ) finSupp 0 ) )
7 nn0ex
 |-  NN0 e. _V
8 7 a1i
 |-  ( ph -> NN0 e. _V )
9 ssrab2
 |-  { h e. ( NN0 ^m I ) | h finSupp 0 } C_ ( NN0 ^m I )
10 9 5 sselid
 |-  ( ph -> X e. ( NN0 ^m I ) )
11 3 8 10 elmaprd
 |-  ( ph -> X : I --> NN0 )
12 1 2 symgbasf1o
 |-  ( D e. P -> D : I -1-1-onto-> I )
13 4 12 syl
 |-  ( ph -> D : I -1-1-onto-> I )
14 f1of
 |-  ( D : I -1-1-onto-> I -> D : I --> I )
15 13 14 syl
 |-  ( ph -> D : I --> I )
16 11 15 fcod
 |-  ( ph -> ( X o. D ) : I --> NN0 )
17 8 3 16 elmapdd
 |-  ( ph -> ( X o. D ) e. ( NN0 ^m I ) )
18 breq1
 |-  ( h = X -> ( h finSupp 0 <-> X finSupp 0 ) )
19 18 elrab
 |-  ( X e. { h e. ( NN0 ^m I ) | h finSupp 0 } <-> ( X e. ( NN0 ^m I ) /\ X finSupp 0 ) )
20 19 simprbi
 |-  ( X e. { h e. ( NN0 ^m I ) | h finSupp 0 } -> X finSupp 0 )
21 5 20 syl
 |-  ( ph -> X finSupp 0 )
22 f1of1
 |-  ( D : I -1-1-onto-> I -> D : I -1-1-> I )
23 13 22 syl
 |-  ( ph -> D : I -1-1-> I )
24 0nn0
 |-  0 e. NN0
25 24 a1i
 |-  ( ph -> 0 e. NN0 )
26 21 23 25 5 fsuppco
 |-  ( ph -> ( X o. D ) finSupp 0 )
27 6 17 26 elrabd
 |-  ( ph -> ( X o. D ) e. { h e. ( NN0 ^m I ) | h finSupp 0 } )