| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constcof.1 |
⊢ ( 𝜑 → 𝐹 : 𝑋 ⟶ 𝐼 ) |
| 2 |
|
constcof.2 |
⊢ ( 𝜑 → 𝑌 ∈ 𝑉 ) |
| 3 |
|
fnconstg |
⊢ ( 𝑌 ∈ 𝑉 → ( 𝐼 × { 𝑌 } ) Fn 𝐼 ) |
| 4 |
2 3
|
syl |
⊢ ( 𝜑 → ( 𝐼 × { 𝑌 } ) Fn 𝐼 ) |
| 5 |
|
fnfco |
⊢ ( ( ( 𝐼 × { 𝑌 } ) Fn 𝐼 ∧ 𝐹 : 𝑋 ⟶ 𝐼 ) → ( ( 𝐼 × { 𝑌 } ) ∘ 𝐹 ) Fn 𝑋 ) |
| 6 |
4 1 5
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝐼 × { 𝑌 } ) ∘ 𝐹 ) Fn 𝑋 ) |
| 7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝐹 : 𝑋 ⟶ 𝐼 ) |
| 8 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑥 ∈ 𝑋 ) |
| 9 |
7 8
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐼 × { 𝑌 } ) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐼 × { 𝑌 } ) ‘ ( 𝐹 ‘ 𝑥 ) ) ) |
| 10 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → 𝑌 ∈ 𝑉 ) |
| 11 |
1
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( 𝐹 ‘ 𝑥 ) ∈ 𝐼 ) |
| 12 |
|
fvconst2g |
⊢ ( ( 𝑌 ∈ 𝑉 ∧ ( 𝐹 ‘ 𝑥 ) ∈ 𝐼 ) → ( ( 𝐼 × { 𝑌 } ) ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑌 ) |
| 13 |
10 11 12
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( 𝐼 × { 𝑌 } ) ‘ ( 𝐹 ‘ 𝑥 ) ) = 𝑌 ) |
| 14 |
9 13
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑋 ) → ( ( ( 𝐼 × { 𝑌 } ) ∘ 𝐹 ) ‘ 𝑥 ) = 𝑌 ) |
| 15 |
6 14
|
fconst7v |
⊢ ( 𝜑 → ( ( 𝐼 × { 𝑌 } ) ∘ 𝐹 ) = ( 𝑋 × { 𝑌 } ) ) |