Metamath Proof Explorer


Theorem constcof

Description: Composition with a constant function. See also fcoconst . (Contributed by Thierry Arnoux, 11-Jan-2026)

Ref Expression
Hypotheses constcof.1 ( 𝜑𝐹 : 𝑋𝐼 )
constcof.2 ( 𝜑𝑌𝑉 )
Assertion constcof ( 𝜑 → ( ( 𝐼 × { 𝑌 } ) ∘ 𝐹 ) = ( 𝑋 × { 𝑌 } ) )

Proof

Step Hyp Ref Expression
1 constcof.1 ( 𝜑𝐹 : 𝑋𝐼 )
2 constcof.2 ( 𝜑𝑌𝑉 )
3 fnconstg ( 𝑌𝑉 → ( 𝐼 × { 𝑌 } ) Fn 𝐼 )
4 2 3 syl ( 𝜑 → ( 𝐼 × { 𝑌 } ) Fn 𝐼 )
5 fnfco ( ( ( 𝐼 × { 𝑌 } ) Fn 𝐼𝐹 : 𝑋𝐼 ) → ( ( 𝐼 × { 𝑌 } ) ∘ 𝐹 ) Fn 𝑋 )
6 4 1 5 syl2anc ( 𝜑 → ( ( 𝐼 × { 𝑌 } ) ∘ 𝐹 ) Fn 𝑋 )
7 1 adantr ( ( 𝜑𝑥𝑋 ) → 𝐹 : 𝑋𝐼 )
8 simpr ( ( 𝜑𝑥𝑋 ) → 𝑥𝑋 )
9 7 8 fvco3d ( ( 𝜑𝑥𝑋 ) → ( ( ( 𝐼 × { 𝑌 } ) ∘ 𝐹 ) ‘ 𝑥 ) = ( ( 𝐼 × { 𝑌 } ) ‘ ( 𝐹𝑥 ) ) )
10 2 adantr ( ( 𝜑𝑥𝑋 ) → 𝑌𝑉 )
11 1 ffvelcdmda ( ( 𝜑𝑥𝑋 ) → ( 𝐹𝑥 ) ∈ 𝐼 )
12 fvconst2g ( ( 𝑌𝑉 ∧ ( 𝐹𝑥 ) ∈ 𝐼 ) → ( ( 𝐼 × { 𝑌 } ) ‘ ( 𝐹𝑥 ) ) = 𝑌 )
13 10 11 12 syl2anc ( ( 𝜑𝑥𝑋 ) → ( ( 𝐼 × { 𝑌 } ) ‘ ( 𝐹𝑥 ) ) = 𝑌 )
14 9 13 eqtrd ( ( 𝜑𝑥𝑋 ) → ( ( ( 𝐼 × { 𝑌 } ) ∘ 𝐹 ) ‘ 𝑥 ) = 𝑌 )
15 6 14 fconst7v ( 𝜑 → ( ( 𝐼 × { 𝑌 } ) ∘ 𝐹 ) = ( 𝑋 × { 𝑌 } ) )