Metamath Proof Explorer


Theorem constcof

Description: Composition with a constant function. See also fcoconst . (Contributed by Thierry Arnoux, 11-Jan-2026)

Ref Expression
Hypotheses constcof.1
|- ( ph -> F : X --> I )
constcof.2
|- ( ph -> Y e. V )
Assertion constcof
|- ( ph -> ( ( I X. { Y } ) o. F ) = ( X X. { Y } ) )

Proof

Step Hyp Ref Expression
1 constcof.1
 |-  ( ph -> F : X --> I )
2 constcof.2
 |-  ( ph -> Y e. V )
3 fnconstg
 |-  ( Y e. V -> ( I X. { Y } ) Fn I )
4 2 3 syl
 |-  ( ph -> ( I X. { Y } ) Fn I )
5 fnfco
 |-  ( ( ( I X. { Y } ) Fn I /\ F : X --> I ) -> ( ( I X. { Y } ) o. F ) Fn X )
6 4 1 5 syl2anc
 |-  ( ph -> ( ( I X. { Y } ) o. F ) Fn X )
7 1 adantr
 |-  ( ( ph /\ x e. X ) -> F : X --> I )
8 simpr
 |-  ( ( ph /\ x e. X ) -> x e. X )
9 7 8 fvco3d
 |-  ( ( ph /\ x e. X ) -> ( ( ( I X. { Y } ) o. F ) ` x ) = ( ( I X. { Y } ) ` ( F ` x ) ) )
10 2 adantr
 |-  ( ( ph /\ x e. X ) -> Y e. V )
11 1 ffvelcdmda
 |-  ( ( ph /\ x e. X ) -> ( F ` x ) e. I )
12 fvconst2g
 |-  ( ( Y e. V /\ ( F ` x ) e. I ) -> ( ( I X. { Y } ) ` ( F ` x ) ) = Y )
13 10 11 12 syl2anc
 |-  ( ( ph /\ x e. X ) -> ( ( I X. { Y } ) ` ( F ` x ) ) = Y )
14 9 13 eqtrd
 |-  ( ( ph /\ x e. X ) -> ( ( ( I X. { Y } ) o. F ) ` x ) = Y )
15 6 14 fconst7v
 |-  ( ph -> ( ( I X. { Y } ) o. F ) = ( X X. { Y } ) )