| Step |
Hyp |
Ref |
Expression |
| 1 |
|
constcof.1 |
|- ( ph -> F : X --> I ) |
| 2 |
|
constcof.2 |
|- ( ph -> Y e. V ) |
| 3 |
|
fnconstg |
|- ( Y e. V -> ( I X. { Y } ) Fn I ) |
| 4 |
2 3
|
syl |
|- ( ph -> ( I X. { Y } ) Fn I ) |
| 5 |
|
fnfco |
|- ( ( ( I X. { Y } ) Fn I /\ F : X --> I ) -> ( ( I X. { Y } ) o. F ) Fn X ) |
| 6 |
4 1 5
|
syl2anc |
|- ( ph -> ( ( I X. { Y } ) o. F ) Fn X ) |
| 7 |
1
|
adantr |
|- ( ( ph /\ x e. X ) -> F : X --> I ) |
| 8 |
|
simpr |
|- ( ( ph /\ x e. X ) -> x e. X ) |
| 9 |
7 8
|
fvco3d |
|- ( ( ph /\ x e. X ) -> ( ( ( I X. { Y } ) o. F ) ` x ) = ( ( I X. { Y } ) ` ( F ` x ) ) ) |
| 10 |
2
|
adantr |
|- ( ( ph /\ x e. X ) -> Y e. V ) |
| 11 |
1
|
ffvelcdmda |
|- ( ( ph /\ x e. X ) -> ( F ` x ) e. I ) |
| 12 |
|
fvconst2g |
|- ( ( Y e. V /\ ( F ` x ) e. I ) -> ( ( I X. { Y } ) ` ( F ` x ) ) = Y ) |
| 13 |
10 11 12
|
syl2anc |
|- ( ( ph /\ x e. X ) -> ( ( I X. { Y } ) ` ( F ` x ) ) = Y ) |
| 14 |
9 13
|
eqtrd |
|- ( ( ph /\ x e. X ) -> ( ( ( I X. { Y } ) o. F ) ` x ) = Y ) |
| 15 |
6 14
|
fconst7v |
|- ( ph -> ( ( I X. { Y } ) o. F ) = ( X X. { Y } ) ) |