| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fconst7v.f |
|- ( ph -> F Fn A ) |
| 2 |
|
fconst7v.e |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = B ) |
| 3 |
|
0xp |
|- ( (/) X. { B } ) = (/) |
| 4 |
3
|
a1i |
|- ( ( ph /\ A = (/) ) -> ( (/) X. { B } ) = (/) ) |
| 5 |
|
simpr |
|- ( ( ph /\ A = (/) ) -> A = (/) ) |
| 6 |
5
|
xpeq1d |
|- ( ( ph /\ A = (/) ) -> ( A X. { B } ) = ( (/) X. { B } ) ) |
| 7 |
1
|
adantr |
|- ( ( ph /\ A = (/) ) -> F Fn A ) |
| 8 |
|
fneq2 |
|- ( A = (/) -> ( F Fn A <-> F Fn (/) ) ) |
| 9 |
8
|
adantl |
|- ( ( ph /\ A = (/) ) -> ( F Fn A <-> F Fn (/) ) ) |
| 10 |
7 9
|
mpbid |
|- ( ( ph /\ A = (/) ) -> F Fn (/) ) |
| 11 |
|
fn0 |
|- ( F Fn (/) <-> F = (/) ) |
| 12 |
10 11
|
sylib |
|- ( ( ph /\ A = (/) ) -> F = (/) ) |
| 13 |
4 6 12
|
3eqtr4rd |
|- ( ( ph /\ A = (/) ) -> F = ( A X. { B } ) ) |
| 14 |
|
fvexd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. _V ) |
| 15 |
2 14
|
eqeltrrd |
|- ( ( ph /\ x e. A ) -> B e. _V ) |
| 16 |
|
snidg |
|- ( B e. _V -> B e. { B } ) |
| 17 |
15 16
|
syl |
|- ( ( ph /\ x e. A ) -> B e. { B } ) |
| 18 |
2 17
|
eqeltrd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) e. { B } ) |
| 19 |
18
|
ralrimiva |
|- ( ph -> A. x e. A ( F ` x ) e. { B } ) |
| 20 |
|
nfcv |
|- F/_ x A |
| 21 |
|
nfcv |
|- F/_ x { B } |
| 22 |
|
nfcv |
|- F/_ x F |
| 23 |
20 21 22
|
ffnfvf |
|- ( F : A --> { B } <-> ( F Fn A /\ A. x e. A ( F ` x ) e. { B } ) ) |
| 24 |
1 19 23
|
sylanbrc |
|- ( ph -> F : A --> { B } ) |
| 25 |
24
|
adantr |
|- ( ( ph /\ A =/= (/) ) -> F : A --> { B } ) |
| 26 |
|
simpr |
|- ( ( ph /\ A =/= (/) ) -> A =/= (/) ) |
| 27 |
15
|
adantlr |
|- ( ( ( ph /\ A =/= (/) ) /\ x e. A ) -> B e. _V ) |
| 28 |
26 27
|
n0limd |
|- ( ( ph /\ A =/= (/) ) -> B e. _V ) |
| 29 |
|
fconst2g |
|- ( B e. _V -> ( F : A --> { B } <-> F = ( A X. { B } ) ) ) |
| 30 |
28 29
|
syl |
|- ( ( ph /\ A =/= (/) ) -> ( F : A --> { B } <-> F = ( A X. { B } ) ) ) |
| 31 |
25 30
|
mpbid |
|- ( ( ph /\ A =/= (/) ) -> F = ( A X. { B } ) ) |
| 32 |
|
exmidne |
|- ( A = (/) \/ A =/= (/) ) |
| 33 |
32
|
a1i |
|- ( ph -> ( A = (/) \/ A =/= (/) ) ) |
| 34 |
13 31 33
|
mpjaodan |
|- ( ph -> F = ( A X. { B } ) ) |