| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fconst7v.f |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 2 |
|
fconst7v.e |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = 𝐵 ) |
| 3 |
|
0xp |
⊢ ( ∅ × { 𝐵 } ) = ∅ |
| 4 |
3
|
a1i |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ( ∅ × { 𝐵 } ) = ∅ ) |
| 5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 𝐴 = ∅ ) |
| 6 |
5
|
xpeq1d |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ( 𝐴 × { 𝐵 } ) = ( ∅ × { 𝐵 } ) ) |
| 7 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 𝐹 Fn 𝐴 ) |
| 8 |
|
fneq2 |
⊢ ( 𝐴 = ∅ → ( 𝐹 Fn 𝐴 ↔ 𝐹 Fn ∅ ) ) |
| 9 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → ( 𝐹 Fn 𝐴 ↔ 𝐹 Fn ∅ ) ) |
| 10 |
7 9
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 𝐹 Fn ∅ ) |
| 11 |
|
fn0 |
⊢ ( 𝐹 Fn ∅ ↔ 𝐹 = ∅ ) |
| 12 |
10 11
|
sylib |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 𝐹 = ∅ ) |
| 13 |
4 6 12
|
3eqtr4rd |
⊢ ( ( 𝜑 ∧ 𝐴 = ∅ ) → 𝐹 = ( 𝐴 × { 𝐵 } ) ) |
| 14 |
|
fvexd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ V ) |
| 15 |
2 14
|
eqeltrrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ V ) |
| 16 |
|
snidg |
⊢ ( 𝐵 ∈ V → 𝐵 ∈ { 𝐵 } ) |
| 17 |
15 16
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ { 𝐵 } ) |
| 18 |
2 17
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } ) |
| 19 |
18
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } ) |
| 20 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐴 |
| 21 |
|
nfcv |
⊢ Ⅎ 𝑥 { 𝐵 } |
| 22 |
|
nfcv |
⊢ Ⅎ 𝑥 𝐹 |
| 23 |
20 21 22
|
ffnfvf |
⊢ ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) ∈ { 𝐵 } ) ) |
| 24 |
1 19 23
|
sylanbrc |
⊢ ( 𝜑 → 𝐹 : 𝐴 ⟶ { 𝐵 } ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐹 : 𝐴 ⟶ { 𝐵 } ) |
| 26 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ ) |
| 27 |
15
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ V ) |
| 28 |
26 27
|
n0limd |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐵 ∈ V ) |
| 29 |
|
fconst2g |
⊢ ( 𝐵 ∈ V → ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ 𝐹 = ( 𝐴 × { 𝐵 } ) ) ) |
| 30 |
28 29
|
syl |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ 𝐹 = ( 𝐴 × { 𝐵 } ) ) ) |
| 31 |
25 30
|
mpbid |
⊢ ( ( 𝜑 ∧ 𝐴 ≠ ∅ ) → 𝐹 = ( 𝐴 × { 𝐵 } ) ) |
| 32 |
|
exmidne |
⊢ ( 𝐴 = ∅ ∨ 𝐴 ≠ ∅ ) |
| 33 |
32
|
a1i |
⊢ ( 𝜑 → ( 𝐴 = ∅ ∨ 𝐴 ≠ ∅ ) ) |
| 34 |
13 31 33
|
mpjaodan |
⊢ ( 𝜑 → 𝐹 = ( 𝐴 × { 𝐵 } ) ) |