Metamath Proof Explorer


Theorem fconst7v

Description: An alternative way to express a constant function. (Contributed by Glauco Siliprandi, 5-Feb-2022) Removed hyphotheses as suggested by SN (Revised by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses fconst7v.f ( 𝜑𝐹 Fn 𝐴 )
fconst7v.e ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) = 𝐵 )
Assertion fconst7v ( 𝜑𝐹 = ( 𝐴 × { 𝐵 } ) )

Proof

Step Hyp Ref Expression
1 fconst7v.f ( 𝜑𝐹 Fn 𝐴 )
2 fconst7v.e ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) = 𝐵 )
3 0xp ( ∅ × { 𝐵 } ) = ∅
4 3 a1i ( ( 𝜑𝐴 = ∅ ) → ( ∅ × { 𝐵 } ) = ∅ )
5 simpr ( ( 𝜑𝐴 = ∅ ) → 𝐴 = ∅ )
6 5 xpeq1d ( ( 𝜑𝐴 = ∅ ) → ( 𝐴 × { 𝐵 } ) = ( ∅ × { 𝐵 } ) )
7 1 adantr ( ( 𝜑𝐴 = ∅ ) → 𝐹 Fn 𝐴 )
8 fneq2 ( 𝐴 = ∅ → ( 𝐹 Fn 𝐴𝐹 Fn ∅ ) )
9 8 adantl ( ( 𝜑𝐴 = ∅ ) → ( 𝐹 Fn 𝐴𝐹 Fn ∅ ) )
10 7 9 mpbid ( ( 𝜑𝐴 = ∅ ) → 𝐹 Fn ∅ )
11 fn0 ( 𝐹 Fn ∅ ↔ 𝐹 = ∅ )
12 10 11 sylib ( ( 𝜑𝐴 = ∅ ) → 𝐹 = ∅ )
13 4 6 12 3eqtr4rd ( ( 𝜑𝐴 = ∅ ) → 𝐹 = ( 𝐴 × { 𝐵 } ) )
14 fvexd ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) ∈ V )
15 2 14 eqeltrrd ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ V )
16 snidg ( 𝐵 ∈ V → 𝐵 ∈ { 𝐵 } )
17 15 16 syl ( ( 𝜑𝑥𝐴 ) → 𝐵 ∈ { 𝐵 } )
18 2 17 eqeltrd ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) ∈ { 𝐵 } )
19 18 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ { 𝐵 } )
20 nfcv 𝑥 𝐴
21 nfcv 𝑥 { 𝐵 }
22 nfcv 𝑥 𝐹
23 20 21 22 ffnfvf ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ ( 𝐹 Fn 𝐴 ∧ ∀ 𝑥𝐴 ( 𝐹𝑥 ) ∈ { 𝐵 } ) )
24 1 19 23 sylanbrc ( 𝜑𝐹 : 𝐴 ⟶ { 𝐵 } )
25 24 adantr ( ( 𝜑𝐴 ≠ ∅ ) → 𝐹 : 𝐴 ⟶ { 𝐵 } )
26 simpr ( ( 𝜑𝐴 ≠ ∅ ) → 𝐴 ≠ ∅ )
27 15 adantlr ( ( ( 𝜑𝐴 ≠ ∅ ) ∧ 𝑥𝐴 ) → 𝐵 ∈ V )
28 26 27 n0limd ( ( 𝜑𝐴 ≠ ∅ ) → 𝐵 ∈ V )
29 fconst2g ( 𝐵 ∈ V → ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ 𝐹 = ( 𝐴 × { 𝐵 } ) ) )
30 28 29 syl ( ( 𝜑𝐴 ≠ ∅ ) → ( 𝐹 : 𝐴 ⟶ { 𝐵 } ↔ 𝐹 = ( 𝐴 × { 𝐵 } ) ) )
31 25 30 mpbid ( ( 𝜑𝐴 ≠ ∅ ) → 𝐹 = ( 𝐴 × { 𝐵 } ) )
32 exmidne ( 𝐴 = ∅ ∨ 𝐴 ≠ ∅ )
33 32 a1i ( 𝜑 → ( 𝐴 = ∅ ∨ 𝐴 ≠ ∅ ) )
34 13 31 33 mpjaodan ( 𝜑𝐹 = ( 𝐴 × { 𝐵 } ) )