Metamath Proof Explorer


Theorem n0limd

Description: Deduction rule for nonempty classes. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses n0limd.1 ( 𝜑𝐴 ≠ ∅ )
n0limd.2 ( ( 𝜑𝑥𝐴 ) → 𝜓 )
Assertion n0limd ( 𝜑𝜓 )

Proof

Step Hyp Ref Expression
1 n0limd.1 ( 𝜑𝐴 ≠ ∅ )
2 n0limd.2 ( ( 𝜑𝑥𝐴 ) → 𝜓 )
3 n0 ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥𝐴 )
4 1 3 sylib ( 𝜑 → ∃ 𝑥 𝑥𝐴 )
5 4 2 exlimddv ( 𝜑𝜓 )