Metamath Proof Explorer
Description: Deduction rule for nonempty classes. (Contributed by Thierry Arnoux, 3-Aug-2025)
|
|
Ref |
Expression |
|
Hypotheses |
n0limd.1 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
|
|
n0limd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝜓 ) |
|
Assertion |
n0limd |
⊢ ( 𝜑 → 𝜓 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
n0limd.1 |
⊢ ( 𝜑 → 𝐴 ≠ ∅ ) |
2 |
|
n0limd.2 |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝜓 ) |
3 |
|
n0 |
⊢ ( 𝐴 ≠ ∅ ↔ ∃ 𝑥 𝑥 ∈ 𝐴 ) |
4 |
1 3
|
sylib |
⊢ ( 𝜑 → ∃ 𝑥 𝑥 ∈ 𝐴 ) |
5 |
4 2
|
exlimddv |
⊢ ( 𝜑 → 𝜓 ) |