Metamath Proof Explorer


Theorem n0limd

Description: Deduction rule for nonempty classes. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses n0limd.1 φ A
n0limd.2 φ x A ψ
Assertion n0limd φ ψ

Proof

Step Hyp Ref Expression
1 n0limd.1 φ A
2 n0limd.2 φ x A ψ
3 n0 A x x A
4 1 3 sylib φ x x A
5 4 2 exlimddv φ ψ