Metamath Proof Explorer
Description: Deduction rule for nonempty classes. (Contributed by Thierry Arnoux, 3-Aug-2025)
|
|
Ref |
Expression |
|
Hypotheses |
n0limd.1 |
|
|
|
n0limd.2 |
|
|
Assertion |
n0limd |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
n0limd.1 |
|
2 |
|
n0limd.2 |
|
3 |
|
n0 |
|
4 |
1 3
|
sylib |
|
5 |
4 2
|
exlimddv |
|