Metamath Proof Explorer


Theorem n0limd

Description: Deduction rule for nonempty classes. (Contributed by Thierry Arnoux, 3-Aug-2025)

Ref Expression
Hypotheses n0limd.1
|- ( ph -> A =/= (/) )
n0limd.2
|- ( ( ph /\ x e. A ) -> ps )
Assertion n0limd
|- ( ph -> ps )

Proof

Step Hyp Ref Expression
1 n0limd.1
 |-  ( ph -> A =/= (/) )
2 n0limd.2
 |-  ( ( ph /\ x e. A ) -> ps )
3 n0
 |-  ( A =/= (/) <-> E. x x e. A )
4 1 3 sylib
 |-  ( ph -> E. x x e. A )
5 4 2 exlimddv
 |-  ( ph -> ps )