Metamath Proof Explorer


Theorem fconst7v

Description: An alternative way to express a constant function. (Contributed by Glauco Siliprandi, 5-Feb-2022) Removed hyphotheses as suggested by SN (Revised by Thierry Arnoux, 10-Jan-2026)

Ref Expression
Hypotheses fconst7v.f φ F Fn A
fconst7v.e φ x A F x = B
Assertion fconst7v φ F = A × B

Proof

Step Hyp Ref Expression
1 fconst7v.f φ F Fn A
2 fconst7v.e φ x A F x = B
3 0xp × B =
4 3 a1i φ A = × B =
5 simpr φ A = A =
6 5 xpeq1d φ A = A × B = × B
7 1 adantr φ A = F Fn A
8 fneq2 A = F Fn A F Fn
9 8 adantl φ A = F Fn A F Fn
10 7 9 mpbid φ A = F Fn
11 fn0 F Fn F =
12 10 11 sylib φ A = F =
13 4 6 12 3eqtr4rd φ A = F = A × B
14 fvexd φ x A F x V
15 2 14 eqeltrrd φ x A B V
16 snidg B V B B
17 15 16 syl φ x A B B
18 2 17 eqeltrd φ x A F x B
19 18 ralrimiva φ x A F x B
20 nfcv _ x A
21 nfcv _ x B
22 nfcv _ x F
23 20 21 22 ffnfvf F : A B F Fn A x A F x B
24 1 19 23 sylanbrc φ F : A B
25 24 adantr φ A F : A B
26 simpr φ A A
27 15 adantlr φ A x A B V
28 26 27 n0limd φ A B V
29 fconst2g B V F : A B F = A × B
30 28 29 syl φ A F : A B F = A × B
31 25 30 mpbid φ A F = A × B
32 exmidne A = A
33 32 a1i φ A = A
34 13 31 33 mpjaodan φ F = A × B