| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ffnfvf.1 |
|- F/_ x A |
| 2 |
|
ffnfvf.2 |
|- F/_ x B |
| 3 |
|
ffnfvf.3 |
|- F/_ x F |
| 4 |
|
ffnfv |
|- ( F : A --> B <-> ( F Fn A /\ A. z e. A ( F ` z ) e. B ) ) |
| 5 |
|
nfcv |
|- F/_ z A |
| 6 |
|
nfcv |
|- F/_ x z |
| 7 |
3 6
|
nffv |
|- F/_ x ( F ` z ) |
| 8 |
7 2
|
nfel |
|- F/ x ( F ` z ) e. B |
| 9 |
|
nfv |
|- F/ z ( F ` x ) e. B |
| 10 |
|
fveq2 |
|- ( z = x -> ( F ` z ) = ( F ` x ) ) |
| 11 |
10
|
eleq1d |
|- ( z = x -> ( ( F ` z ) e. B <-> ( F ` x ) e. B ) ) |
| 12 |
5 1 8 9 11
|
cbvralfw |
|- ( A. z e. A ( F ` z ) e. B <-> A. x e. A ( F ` x ) e. B ) |
| 13 |
12
|
anbi2i |
|- ( ( F Fn A /\ A. z e. A ( F ` z ) e. B ) <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) ) |
| 14 |
4 13
|
bitri |
|- ( F : A --> B <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) ) |