Metamath Proof Explorer


Theorem ffnfvf

Description: A function maps to a class to which all values belong. This version of ffnfv uses bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 28-Sep-2006)

Ref Expression
Hypotheses ffnfvf.1
|- F/_ x A
ffnfvf.2
|- F/_ x B
ffnfvf.3
|- F/_ x F
Assertion ffnfvf
|- ( F : A --> B <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) )

Proof

Step Hyp Ref Expression
1 ffnfvf.1
 |-  F/_ x A
2 ffnfvf.2
 |-  F/_ x B
3 ffnfvf.3
 |-  F/_ x F
4 ffnfv
 |-  ( F : A --> B <-> ( F Fn A /\ A. z e. A ( F ` z ) e. B ) )
5 nfcv
 |-  F/_ z A
6 nfcv
 |-  F/_ x z
7 3 6 nffv
 |-  F/_ x ( F ` z )
8 7 2 nfel
 |-  F/ x ( F ` z ) e. B
9 nfv
 |-  F/ z ( F ` x ) e. B
10 fveq2
 |-  ( z = x -> ( F ` z ) = ( F ` x ) )
11 10 eleq1d
 |-  ( z = x -> ( ( F ` z ) e. B <-> ( F ` x ) e. B ) )
12 5 1 8 9 11 cbvralfw
 |-  ( A. z e. A ( F ` z ) e. B <-> A. x e. A ( F ` x ) e. B )
13 12 anbi2i
 |-  ( ( F Fn A /\ A. z e. A ( F ` z ) e. B ) <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) )
14 4 13 bitri
 |-  ( F : A --> B <-> ( F Fn A /\ A. x e. A ( F ` x ) e. B ) )