| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ofrco.1 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 2 |
|
ofrco.2 |
⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 3 |
|
ofrco.3 |
⊢ ( 𝜑 → 𝐻 : 𝐶 ⟶ 𝐴 ) |
| 4 |
|
ofrco.4 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 5 |
|
ofrco.5 |
⊢ ( 𝜑 → 𝐶 ∈ 𝑊 ) |
| 6 |
|
ofrco.6 |
⊢ ( 𝜑 → 𝐹 ∘r 𝑅 𝐺 ) |
| 7 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐻 ‘ 𝑥 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
| 8 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐻 ‘ 𝑥 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
| 9 |
7 8
|
breq12d |
⊢ ( 𝑦 = ( 𝐻 ‘ 𝑥 ) → ( ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐺 ‘ 𝑦 ) ↔ ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 10 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
| 11 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑦 ) = ( 𝐹 ‘ 𝑦 ) ) |
| 12 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑦 ) = ( 𝐺 ‘ 𝑦 ) ) |
| 13 |
1 2 4 4 10 11 12
|
ofrfval |
⊢ ( 𝜑 → ( 𝐹 ∘r 𝑅 𝐺 ↔ ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐺 ‘ 𝑦 ) ) ) |
| 14 |
6 13
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐺 ‘ 𝑦 ) ) |
| 15 |
14
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ∀ 𝑦 ∈ 𝐴 ( 𝐹 ‘ 𝑦 ) 𝑅 ( 𝐺 ‘ 𝑦 ) ) |
| 16 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐻 ‘ 𝑥 ) ∈ 𝐴 ) |
| 17 |
9 15 16
|
rspcdva |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
| 18 |
17
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐶 ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
| 19 |
|
fnfco |
⊢ ( ( 𝐹 Fn 𝐴 ∧ 𝐻 : 𝐶 ⟶ 𝐴 ) → ( 𝐹 ∘ 𝐻 ) Fn 𝐶 ) |
| 20 |
1 3 19
|
syl2anc |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) Fn 𝐶 ) |
| 21 |
|
fnfco |
⊢ ( ( 𝐺 Fn 𝐴 ∧ 𝐻 : 𝐶 ⟶ 𝐴 ) → ( 𝐺 ∘ 𝐻 ) Fn 𝐶 ) |
| 22 |
2 3 21
|
syl2anc |
⊢ ( 𝜑 → ( 𝐺 ∘ 𝐻 ) Fn 𝐶 ) |
| 23 |
|
inidm |
⊢ ( 𝐶 ∩ 𝐶 ) = 𝐶 |
| 24 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝐻 : 𝐶 ⟶ 𝐴 ) |
| 25 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → 𝑥 ∈ 𝐶 ) |
| 26 |
24 25
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐹 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
| 27 |
24 25
|
fvco3d |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐶 ) → ( ( 𝐺 ∘ 𝐻 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) |
| 28 |
20 22 5 5 23 26 27
|
ofrfval |
⊢ ( 𝜑 → ( ( 𝐹 ∘ 𝐻 ) ∘r 𝑅 ( 𝐺 ∘ 𝐻 ) ↔ ∀ 𝑥 ∈ 𝐶 ( 𝐹 ‘ ( 𝐻 ‘ 𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻 ‘ 𝑥 ) ) ) ) |
| 29 |
18 28
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ∘ 𝐻 ) ∘r 𝑅 ( 𝐺 ∘ 𝐻 ) ) |