Metamath Proof Explorer


Theorem ofrco

Description: Function relation between function compositions. (Contributed by Thierry Arnoux, 15-Jan-2026)

Ref Expression
Hypotheses ofrco.1 ( 𝜑𝐹 Fn 𝐴 )
ofrco.2 ( 𝜑𝐺 Fn 𝐴 )
ofrco.3 ( 𝜑𝐻 : 𝐶𝐴 )
ofrco.4 ( 𝜑𝐴𝑉 )
ofrco.5 ( 𝜑𝐶𝑊 )
ofrco.6 ( 𝜑𝐹r 𝑅 𝐺 )
Assertion ofrco ( 𝜑 → ( 𝐹𝐻 ) ∘r 𝑅 ( 𝐺𝐻 ) )

Proof

Step Hyp Ref Expression
1 ofrco.1 ( 𝜑𝐹 Fn 𝐴 )
2 ofrco.2 ( 𝜑𝐺 Fn 𝐴 )
3 ofrco.3 ( 𝜑𝐻 : 𝐶𝐴 )
4 ofrco.4 ( 𝜑𝐴𝑉 )
5 ofrco.5 ( 𝜑𝐶𝑊 )
6 ofrco.6 ( 𝜑𝐹r 𝑅 𝐺 )
7 fveq2 ( 𝑦 = ( 𝐻𝑥 ) → ( 𝐹𝑦 ) = ( 𝐹 ‘ ( 𝐻𝑥 ) ) )
8 fveq2 ( 𝑦 = ( 𝐻𝑥 ) → ( 𝐺𝑦 ) = ( 𝐺 ‘ ( 𝐻𝑥 ) ) )
9 7 8 breq12d ( 𝑦 = ( 𝐻𝑥 ) → ( ( 𝐹𝑦 ) 𝑅 ( 𝐺𝑦 ) ↔ ( 𝐹 ‘ ( 𝐻𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻𝑥 ) ) ) )
10 inidm ( 𝐴𝐴 ) = 𝐴
11 eqidd ( ( 𝜑𝑦𝐴 ) → ( 𝐹𝑦 ) = ( 𝐹𝑦 ) )
12 eqidd ( ( 𝜑𝑦𝐴 ) → ( 𝐺𝑦 ) = ( 𝐺𝑦 ) )
13 1 2 4 4 10 11 12 ofrfval ( 𝜑 → ( 𝐹r 𝑅 𝐺 ↔ ∀ 𝑦𝐴 ( 𝐹𝑦 ) 𝑅 ( 𝐺𝑦 ) ) )
14 6 13 mpbid ( 𝜑 → ∀ 𝑦𝐴 ( 𝐹𝑦 ) 𝑅 ( 𝐺𝑦 ) )
15 14 adantr ( ( 𝜑𝑥𝐶 ) → ∀ 𝑦𝐴 ( 𝐹𝑦 ) 𝑅 ( 𝐺𝑦 ) )
16 3 ffvelcdmda ( ( 𝜑𝑥𝐶 ) → ( 𝐻𝑥 ) ∈ 𝐴 )
17 9 15 16 rspcdva ( ( 𝜑𝑥𝐶 ) → ( 𝐹 ‘ ( 𝐻𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻𝑥 ) ) )
18 17 ralrimiva ( 𝜑 → ∀ 𝑥𝐶 ( 𝐹 ‘ ( 𝐻𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻𝑥 ) ) )
19 fnfco ( ( 𝐹 Fn 𝐴𝐻 : 𝐶𝐴 ) → ( 𝐹𝐻 ) Fn 𝐶 )
20 1 3 19 syl2anc ( 𝜑 → ( 𝐹𝐻 ) Fn 𝐶 )
21 fnfco ( ( 𝐺 Fn 𝐴𝐻 : 𝐶𝐴 ) → ( 𝐺𝐻 ) Fn 𝐶 )
22 2 3 21 syl2anc ( 𝜑 → ( 𝐺𝐻 ) Fn 𝐶 )
23 inidm ( 𝐶𝐶 ) = 𝐶
24 3 adantr ( ( 𝜑𝑥𝐶 ) → 𝐻 : 𝐶𝐴 )
25 simpr ( ( 𝜑𝑥𝐶 ) → 𝑥𝐶 )
26 24 25 fvco3d ( ( 𝜑𝑥𝐶 ) → ( ( 𝐹𝐻 ) ‘ 𝑥 ) = ( 𝐹 ‘ ( 𝐻𝑥 ) ) )
27 24 25 fvco3d ( ( 𝜑𝑥𝐶 ) → ( ( 𝐺𝐻 ) ‘ 𝑥 ) = ( 𝐺 ‘ ( 𝐻𝑥 ) ) )
28 20 22 5 5 23 26 27 ofrfval ( 𝜑 → ( ( 𝐹𝐻 ) ∘r 𝑅 ( 𝐺𝐻 ) ↔ ∀ 𝑥𝐶 ( 𝐹 ‘ ( 𝐻𝑥 ) ) 𝑅 ( 𝐺 ‘ ( 𝐻𝑥 ) ) ) )
29 18 28 mpbird ( 𝜑 → ( 𝐹𝐻 ) ∘r 𝑅 ( 𝐺𝐻 ) )