| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ofrco.1 |
|- ( ph -> F Fn A ) |
| 2 |
|
ofrco.2 |
|- ( ph -> G Fn A ) |
| 3 |
|
ofrco.3 |
|- ( ph -> H : C --> A ) |
| 4 |
|
ofrco.4 |
|- ( ph -> A e. V ) |
| 5 |
|
ofrco.5 |
|- ( ph -> C e. W ) |
| 6 |
|
ofrco.6 |
|- ( ph -> F oR R G ) |
| 7 |
|
fveq2 |
|- ( y = ( H ` x ) -> ( F ` y ) = ( F ` ( H ` x ) ) ) |
| 8 |
|
fveq2 |
|- ( y = ( H ` x ) -> ( G ` y ) = ( G ` ( H ` x ) ) ) |
| 9 |
7 8
|
breq12d |
|- ( y = ( H ` x ) -> ( ( F ` y ) R ( G ` y ) <-> ( F ` ( H ` x ) ) R ( G ` ( H ` x ) ) ) ) |
| 10 |
|
inidm |
|- ( A i^i A ) = A |
| 11 |
|
eqidd |
|- ( ( ph /\ y e. A ) -> ( F ` y ) = ( F ` y ) ) |
| 12 |
|
eqidd |
|- ( ( ph /\ y e. A ) -> ( G ` y ) = ( G ` y ) ) |
| 13 |
1 2 4 4 10 11 12
|
ofrfval |
|- ( ph -> ( F oR R G <-> A. y e. A ( F ` y ) R ( G ` y ) ) ) |
| 14 |
6 13
|
mpbid |
|- ( ph -> A. y e. A ( F ` y ) R ( G ` y ) ) |
| 15 |
14
|
adantr |
|- ( ( ph /\ x e. C ) -> A. y e. A ( F ` y ) R ( G ` y ) ) |
| 16 |
3
|
ffvelcdmda |
|- ( ( ph /\ x e. C ) -> ( H ` x ) e. A ) |
| 17 |
9 15 16
|
rspcdva |
|- ( ( ph /\ x e. C ) -> ( F ` ( H ` x ) ) R ( G ` ( H ` x ) ) ) |
| 18 |
17
|
ralrimiva |
|- ( ph -> A. x e. C ( F ` ( H ` x ) ) R ( G ` ( H ` x ) ) ) |
| 19 |
|
fnfco |
|- ( ( F Fn A /\ H : C --> A ) -> ( F o. H ) Fn C ) |
| 20 |
1 3 19
|
syl2anc |
|- ( ph -> ( F o. H ) Fn C ) |
| 21 |
|
fnfco |
|- ( ( G Fn A /\ H : C --> A ) -> ( G o. H ) Fn C ) |
| 22 |
2 3 21
|
syl2anc |
|- ( ph -> ( G o. H ) Fn C ) |
| 23 |
|
inidm |
|- ( C i^i C ) = C |
| 24 |
3
|
adantr |
|- ( ( ph /\ x e. C ) -> H : C --> A ) |
| 25 |
|
simpr |
|- ( ( ph /\ x e. C ) -> x e. C ) |
| 26 |
24 25
|
fvco3d |
|- ( ( ph /\ x e. C ) -> ( ( F o. H ) ` x ) = ( F ` ( H ` x ) ) ) |
| 27 |
24 25
|
fvco3d |
|- ( ( ph /\ x e. C ) -> ( ( G o. H ) ` x ) = ( G ` ( H ` x ) ) ) |
| 28 |
20 22 5 5 23 26 27
|
ofrfval |
|- ( ph -> ( ( F o. H ) oR R ( G o. H ) <-> A. x e. C ( F ` ( H ` x ) ) R ( G ` ( H ` x ) ) ) ) |
| 29 |
18 28
|
mpbird |
|- ( ph -> ( F o. H ) oR R ( G o. H ) ) |