Metamath Proof Explorer


Theorem cocnvf1o

Description: Composing with the inverse of a bijection. (Contributed by Thierry Arnoux, 15-Jan-2026)

Ref Expression
Hypotheses cocnvf1o.1 ( 𝜑𝐹 : 𝐴𝐵 )
cocnvf1o.2 ( 𝜑𝐺 : 𝐴𝐵 )
cocnvf1o.3 ( 𝜑𝐻 : 𝐴1-1-onto𝐴 )
Assertion cocnvf1o ( 𝜑 → ( 𝐹 = ( 𝐺𝐻 ) ↔ 𝐺 = ( 𝐹 𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 cocnvf1o.1 ( 𝜑𝐹 : 𝐴𝐵 )
2 cocnvf1o.2 ( 𝜑𝐺 : 𝐴𝐵 )
3 cocnvf1o.3 ( 𝜑𝐻 : 𝐴1-1-onto𝐴 )
4 simpr ( ( 𝜑𝐹 = ( 𝐺𝐻 ) ) → 𝐹 = ( 𝐺𝐻 ) )
5 4 coeq1d ( ( 𝜑𝐹 = ( 𝐺𝐻 ) ) → ( 𝐹 𝐻 ) = ( ( 𝐺𝐻 ) ∘ 𝐻 ) )
6 coass ( ( 𝐺𝐻 ) ∘ 𝐻 ) = ( 𝐺 ∘ ( 𝐻 𝐻 ) )
7 5 6 eqtrdi ( ( 𝜑𝐹 = ( 𝐺𝐻 ) ) → ( 𝐹 𝐻 ) = ( 𝐺 ∘ ( 𝐻 𝐻 ) ) )
8 f1ococnv2 ( 𝐻 : 𝐴1-1-onto𝐴 → ( 𝐻 𝐻 ) = ( I ↾ 𝐴 ) )
9 3 8 syl ( 𝜑 → ( 𝐻 𝐻 ) = ( I ↾ 𝐴 ) )
10 9 coeq2d ( 𝜑 → ( 𝐺 ∘ ( 𝐻 𝐻 ) ) = ( 𝐺 ∘ ( I ↾ 𝐴 ) ) )
11 fcoi1 ( 𝐺 : 𝐴𝐵 → ( 𝐺 ∘ ( I ↾ 𝐴 ) ) = 𝐺 )
12 2 11 syl ( 𝜑 → ( 𝐺 ∘ ( I ↾ 𝐴 ) ) = 𝐺 )
13 10 12 eqtrd ( 𝜑 → ( 𝐺 ∘ ( 𝐻 𝐻 ) ) = 𝐺 )
14 13 adantr ( ( 𝜑𝐹 = ( 𝐺𝐻 ) ) → ( 𝐺 ∘ ( 𝐻 𝐻 ) ) = 𝐺 )
15 7 14 eqtr2d ( ( 𝜑𝐹 = ( 𝐺𝐻 ) ) → 𝐺 = ( 𝐹 𝐻 ) )
16 simpr ( ( 𝜑𝐺 = ( 𝐹 𝐻 ) ) → 𝐺 = ( 𝐹 𝐻 ) )
17 16 coeq1d ( ( 𝜑𝐺 = ( 𝐹 𝐻 ) ) → ( 𝐺𝐻 ) = ( ( 𝐹 𝐻 ) ∘ 𝐻 ) )
18 coass ( ( 𝐹 𝐻 ) ∘ 𝐻 ) = ( 𝐹 ∘ ( 𝐻𝐻 ) )
19 17 18 eqtrdi ( ( 𝜑𝐺 = ( 𝐹 𝐻 ) ) → ( 𝐺𝐻 ) = ( 𝐹 ∘ ( 𝐻𝐻 ) ) )
20 f1ococnv1 ( 𝐻 : 𝐴1-1-onto𝐴 → ( 𝐻𝐻 ) = ( I ↾ 𝐴 ) )
21 3 20 syl ( 𝜑 → ( 𝐻𝐻 ) = ( I ↾ 𝐴 ) )
22 21 coeq2d ( 𝜑 → ( 𝐹 ∘ ( 𝐻𝐻 ) ) = ( 𝐹 ∘ ( I ↾ 𝐴 ) ) )
23 fcoi1 ( 𝐹 : 𝐴𝐵 → ( 𝐹 ∘ ( I ↾ 𝐴 ) ) = 𝐹 )
24 1 23 syl ( 𝜑 → ( 𝐹 ∘ ( I ↾ 𝐴 ) ) = 𝐹 )
25 22 24 eqtrd ( 𝜑 → ( 𝐹 ∘ ( 𝐻𝐻 ) ) = 𝐹 )
26 25 adantr ( ( 𝜑𝐺 = ( 𝐹 𝐻 ) ) → ( 𝐹 ∘ ( 𝐻𝐻 ) ) = 𝐹 )
27 19 26 eqtr2d ( ( 𝜑𝐺 = ( 𝐹 𝐻 ) ) → 𝐹 = ( 𝐺𝐻 ) )
28 15 27 impbida ( 𝜑 → ( 𝐹 = ( 𝐺𝐻 ) ↔ 𝐺 = ( 𝐹 𝐻 ) ) )