| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cocnvf1o.1 |
|- ( ph -> F : A --> B ) |
| 2 |
|
cocnvf1o.2 |
|- ( ph -> G : A --> B ) |
| 3 |
|
cocnvf1o.3 |
|- ( ph -> H : A -1-1-onto-> A ) |
| 4 |
|
simpr |
|- ( ( ph /\ F = ( G o. H ) ) -> F = ( G o. H ) ) |
| 5 |
4
|
coeq1d |
|- ( ( ph /\ F = ( G o. H ) ) -> ( F o. `' H ) = ( ( G o. H ) o. `' H ) ) |
| 6 |
|
coass |
|- ( ( G o. H ) o. `' H ) = ( G o. ( H o. `' H ) ) |
| 7 |
5 6
|
eqtrdi |
|- ( ( ph /\ F = ( G o. H ) ) -> ( F o. `' H ) = ( G o. ( H o. `' H ) ) ) |
| 8 |
|
f1ococnv2 |
|- ( H : A -1-1-onto-> A -> ( H o. `' H ) = ( _I |` A ) ) |
| 9 |
3 8
|
syl |
|- ( ph -> ( H o. `' H ) = ( _I |` A ) ) |
| 10 |
9
|
coeq2d |
|- ( ph -> ( G o. ( H o. `' H ) ) = ( G o. ( _I |` A ) ) ) |
| 11 |
|
fcoi1 |
|- ( G : A --> B -> ( G o. ( _I |` A ) ) = G ) |
| 12 |
2 11
|
syl |
|- ( ph -> ( G o. ( _I |` A ) ) = G ) |
| 13 |
10 12
|
eqtrd |
|- ( ph -> ( G o. ( H o. `' H ) ) = G ) |
| 14 |
13
|
adantr |
|- ( ( ph /\ F = ( G o. H ) ) -> ( G o. ( H o. `' H ) ) = G ) |
| 15 |
7 14
|
eqtr2d |
|- ( ( ph /\ F = ( G o. H ) ) -> G = ( F o. `' H ) ) |
| 16 |
|
simpr |
|- ( ( ph /\ G = ( F o. `' H ) ) -> G = ( F o. `' H ) ) |
| 17 |
16
|
coeq1d |
|- ( ( ph /\ G = ( F o. `' H ) ) -> ( G o. H ) = ( ( F o. `' H ) o. H ) ) |
| 18 |
|
coass |
|- ( ( F o. `' H ) o. H ) = ( F o. ( `' H o. H ) ) |
| 19 |
17 18
|
eqtrdi |
|- ( ( ph /\ G = ( F o. `' H ) ) -> ( G o. H ) = ( F o. ( `' H o. H ) ) ) |
| 20 |
|
f1ococnv1 |
|- ( H : A -1-1-onto-> A -> ( `' H o. H ) = ( _I |` A ) ) |
| 21 |
3 20
|
syl |
|- ( ph -> ( `' H o. H ) = ( _I |` A ) ) |
| 22 |
21
|
coeq2d |
|- ( ph -> ( F o. ( `' H o. H ) ) = ( F o. ( _I |` A ) ) ) |
| 23 |
|
fcoi1 |
|- ( F : A --> B -> ( F o. ( _I |` A ) ) = F ) |
| 24 |
1 23
|
syl |
|- ( ph -> ( F o. ( _I |` A ) ) = F ) |
| 25 |
22 24
|
eqtrd |
|- ( ph -> ( F o. ( `' H o. H ) ) = F ) |
| 26 |
25
|
adantr |
|- ( ( ph /\ G = ( F o. `' H ) ) -> ( F o. ( `' H o. H ) ) = F ) |
| 27 |
19 26
|
eqtr2d |
|- ( ( ph /\ G = ( F o. `' H ) ) -> F = ( G o. H ) ) |
| 28 |
15 27
|
impbida |
|- ( ph -> ( F = ( G o. H ) <-> G = ( F o. `' H ) ) ) |