Metamath Proof Explorer


Theorem elrabrd

Description: Deduction version of elrab , just like elrabd , but backwards direction. (Contributed by Thierry Arnoux, 15-Jan-2026)

Ref Expression
Hypotheses elrabrd.1 ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) )
elrabrd.2 ( 𝜑𝐴 ∈ { 𝑥𝐵𝜓 } )
Assertion elrabrd ( 𝜑𝜒 )

Proof

Step Hyp Ref Expression
1 elrabrd.1 ( 𝑥 = 𝐴 → ( 𝜓𝜒 ) )
2 elrabrd.2 ( 𝜑𝐴 ∈ { 𝑥𝐵𝜓 } )
3 1 elrab ( 𝐴 ∈ { 𝑥𝐵𝜓 } ↔ ( 𝐴𝐵𝜒 ) )
4 2 3 sylib ( 𝜑 → ( 𝐴𝐵𝜒 ) )
5 4 simprd ( 𝜑𝜒 )