Description: Deduction version of elrab , just like elrabd , but backwards direction. (Contributed by Thierry Arnoux, 15-Jan-2026)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | elrabrd.1 | |- ( x = A -> ( ps <-> ch ) ) |
|
| elrabrd.2 | |- ( ph -> A e. { x e. B | ps } ) |
||
| Assertion | elrabrd | |- ( ph -> ch ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elrabrd.1 | |- ( x = A -> ( ps <-> ch ) ) |
|
| 2 | elrabrd.2 | |- ( ph -> A e. { x e. B | ps } ) |
|
| 3 | 1 | elrab | |- ( A e. { x e. B | ps } <-> ( A e. B /\ ch ) ) |
| 4 | 2 3 | sylib | |- ( ph -> ( A e. B /\ ch ) ) |
| 5 | 4 | simprd | |- ( ph -> ch ) |