Metamath Proof Explorer


Theorem elrabrd

Description: Deduction version of elrab , just like elrabd , but backwards direction. (Contributed by Thierry Arnoux, 15-Jan-2026)

Ref Expression
Hypotheses elrabrd.1 x = A ψ χ
elrabrd.2 φ A x B | ψ
Assertion elrabrd φ χ

Proof

Step Hyp Ref Expression
1 elrabrd.1 x = A ψ χ
2 elrabrd.2 φ A x B | ψ
3 1 elrab A x B | ψ A B χ
4 2 3 sylib φ A B χ
5 4 simprd φ χ