Metamath Proof Explorer


Theorem gsummptfsf1o

Description: Re-index a finite group sum using a bijection. A version of gsummptf1o expressed using finite support. (Contributed by Thierry Arnoux, 5-Oct-2025)

Ref Expression
Hypotheses gsummptfsf1o.x 𝑥 𝐻
gsummptfsf1o.b 𝐵 = ( Base ‘ 𝐺 )
gsummptfsf1o.z 0 = ( 0g𝐺 )
gsummptfsf1o.i ( 𝑥 = 𝐸𝐶 = 𝐻 )
gsummptfsf1o.g ( 𝜑𝐺 ∈ CMnd )
gsummptfsf1o.1 ( 𝜑𝐴𝑉 )
gsummptfsf1o.a ( 𝜑 → ( 𝑥𝐴𝐶 ) finSupp 0 )
gsummptfsf1o.d ( 𝜑𝐹𝐵 )
gsummptfsf1o.f ( ( 𝜑𝑥𝐴 ) → 𝐶𝐹 )
gsummptfsf1o.e ( ( 𝜑𝑦𝐷 ) → 𝐸𝐴 )
gsummptfsf1o.h ( ( 𝜑𝑥𝐴 ) → ∃! 𝑦𝐷 𝑥 = 𝐸 )
Assertion gsummptfsf1o ( 𝜑 → ( 𝐺 Σg ( 𝑥𝐴𝐶 ) ) = ( 𝐺 Σg ( 𝑦𝐷𝐻 ) ) )

Proof

Step Hyp Ref Expression
1 gsummptfsf1o.x 𝑥 𝐻
2 gsummptfsf1o.b 𝐵 = ( Base ‘ 𝐺 )
3 gsummptfsf1o.z 0 = ( 0g𝐺 )
4 gsummptfsf1o.i ( 𝑥 = 𝐸𝐶 = 𝐻 )
5 gsummptfsf1o.g ( 𝜑𝐺 ∈ CMnd )
6 gsummptfsf1o.1 ( 𝜑𝐴𝑉 )
7 gsummptfsf1o.a ( 𝜑 → ( 𝑥𝐴𝐶 ) finSupp 0 )
8 gsummptfsf1o.d ( 𝜑𝐹𝐵 )
9 gsummptfsf1o.f ( ( 𝜑𝑥𝐴 ) → 𝐶𝐹 )
10 gsummptfsf1o.e ( ( 𝜑𝑦𝐷 ) → 𝐸𝐴 )
11 gsummptfsf1o.h ( ( 𝜑𝑥𝐴 ) → ∃! 𝑦𝐷 𝑥 = 𝐸 )
12 8 adantr ( ( 𝜑𝑥𝐴 ) → 𝐹𝐵 )
13 12 9 sseldd ( ( 𝜑𝑥𝐴 ) → 𝐶𝐵 )
14 13 fmpttd ( 𝜑 → ( 𝑥𝐴𝐶 ) : 𝐴𝐵 )
15 10 ralrimiva ( 𝜑 → ∀ 𝑦𝐷 𝐸𝐴 )
16 11 ralrimiva ( 𝜑 → ∀ 𝑥𝐴 ∃! 𝑦𝐷 𝑥 = 𝐸 )
17 eqid ( 𝑦𝐷𝐸 ) = ( 𝑦𝐷𝐸 )
18 17 f1ompt ( ( 𝑦𝐷𝐸 ) : 𝐷1-1-onto𝐴 ↔ ( ∀ 𝑦𝐷 𝐸𝐴 ∧ ∀ 𝑥𝐴 ∃! 𝑦𝐷 𝑥 = 𝐸 ) )
19 15 16 18 sylanbrc ( 𝜑 → ( 𝑦𝐷𝐸 ) : 𝐷1-1-onto𝐴 )
20 2 3 5 6 14 7 19 gsumf1o ( 𝜑 → ( 𝐺 Σg ( 𝑥𝐴𝐶 ) ) = ( 𝐺 Σg ( ( 𝑥𝐴𝐶 ) ∘ ( 𝑦𝐷𝐸 ) ) ) )
21 eqidd ( 𝜑 → ( 𝑦𝐷𝐸 ) = ( 𝑦𝐷𝐸 ) )
22 eqidd ( 𝜑 → ( 𝑥𝐴𝐶 ) = ( 𝑥𝐴𝐶 ) )
23 15 21 22 fmptcos ( 𝜑 → ( ( 𝑥𝐴𝐶 ) ∘ ( 𝑦𝐷𝐸 ) ) = ( 𝑦𝐷 𝐸 / 𝑥 𝐶 ) )
24 nfv 𝑥 ( 𝜑𝑦𝐷 )
25 1 a1i ( ( 𝜑𝑦𝐷 ) → 𝑥 𝐻 )
26 4 adantl ( ( ( 𝜑𝑦𝐷 ) ∧ 𝑥 = 𝐸 ) → 𝐶 = 𝐻 )
27 24 25 10 26 csbiedf ( ( 𝜑𝑦𝐷 ) → 𝐸 / 𝑥 𝐶 = 𝐻 )
28 27 mpteq2dva ( 𝜑 → ( 𝑦𝐷 𝐸 / 𝑥 𝐶 ) = ( 𝑦𝐷𝐻 ) )
29 23 28 eqtrd ( 𝜑 → ( ( 𝑥𝐴𝐶 ) ∘ ( 𝑦𝐷𝐸 ) ) = ( 𝑦𝐷𝐻 ) )
30 29 oveq2d ( 𝜑 → ( 𝐺 Σg ( ( 𝑥𝐴𝐶 ) ∘ ( 𝑦𝐷𝐸 ) ) ) = ( 𝐺 Σg ( 𝑦𝐷𝐻 ) ) )
31 20 30 eqtrd ( 𝜑 → ( 𝐺 Σg ( 𝑥𝐴𝐶 ) ) = ( 𝐺 Σg ( 𝑦𝐷𝐻 ) ) )