Metamath Proof Explorer


Theorem gsummptfsf1o

Description: Re-index a finite group sum using a bijection. A version of gsummptf1o expressed using finite support. (Contributed by Thierry Arnoux, 5-Oct-2025)

Ref Expression
Hypotheses gsummptfsf1o.x _ x H
gsummptfsf1o.b B = Base G
gsummptfsf1o.z 0 ˙ = 0 G
gsummptfsf1o.i x = E C = H
gsummptfsf1o.g φ G CMnd
gsummptfsf1o.1 φ A V
gsummptfsf1o.a φ finSupp 0 ˙ x A C
gsummptfsf1o.d φ F B
gsummptfsf1o.f φ x A C F
gsummptfsf1o.e φ y D E A
gsummptfsf1o.h φ x A ∃! y D x = E
Assertion gsummptfsf1o φ G x A C = G y D H

Proof

Step Hyp Ref Expression
1 gsummptfsf1o.x _ x H
2 gsummptfsf1o.b B = Base G
3 gsummptfsf1o.z 0 ˙ = 0 G
4 gsummptfsf1o.i x = E C = H
5 gsummptfsf1o.g φ G CMnd
6 gsummptfsf1o.1 φ A V
7 gsummptfsf1o.a φ finSupp 0 ˙ x A C
8 gsummptfsf1o.d φ F B
9 gsummptfsf1o.f φ x A C F
10 gsummptfsf1o.e φ y D E A
11 gsummptfsf1o.h φ x A ∃! y D x = E
12 8 adantr φ x A F B
13 12 9 sseldd φ x A C B
14 13 fmpttd φ x A C : A B
15 10 ralrimiva φ y D E A
16 11 ralrimiva φ x A ∃! y D x = E
17 eqid y D E = y D E
18 17 f1ompt y D E : D 1-1 onto A y D E A x A ∃! y D x = E
19 15 16 18 sylanbrc φ y D E : D 1-1 onto A
20 2 3 5 6 14 7 19 gsumf1o φ G x A C = G x A C y D E
21 eqidd φ y D E = y D E
22 eqidd φ x A C = x A C
23 15 21 22 fmptcos φ x A C y D E = y D E / x C
24 nfv x φ y D
25 1 a1i φ y D _ x H
26 4 adantl φ y D x = E C = H
27 24 25 10 26 csbiedf φ y D E / x C = H
28 27 mpteq2dva φ y D E / x C = y D H
29 23 28 eqtrd φ x A C y D E = y D H
30 29 oveq2d φ G x A C y D E = G y D H
31 20 30 eqtrd φ G x A C = G y D H