| Step |
Hyp |
Ref |
Expression |
| 1 |
|
gsumfs2d.p |
|
| 2 |
|
gsumfs2d.b |
|
| 3 |
|
gsumfs2d.1 |
|
| 4 |
|
gsumfs2d.r |
|
| 5 |
|
gsumfs2d.2 |
|
| 6 |
|
gsumfs2d.w |
|
| 7 |
|
gsumfs2d.3 |
|
| 8 |
|
gsumfs2d.a |
|
| 9 |
6
|
adantr |
|
| 10 |
8
|
adantr |
|
| 11 |
10
|
imaexd |
|
| 12 |
7
|
ffnd |
|
| 13 |
12
|
ad2antrr |
|
| 14 |
8
|
ad2antrr |
|
| 15 |
3
|
fvexi |
|
| 16 |
15
|
a1i |
|
| 17 |
|
simpr |
|
| 18 |
17
|
eldifad |
|
| 19 |
|
vex |
|
| 20 |
|
vex |
|
| 21 |
19 20
|
elimasn |
|
| 22 |
21
|
biimpi |
|
| 23 |
18 22
|
syl |
|
| 24 |
17
|
eldifbd |
|
| 25 |
19 20
|
elimasn |
|
| 26 |
25
|
biimpri |
|
| 27 |
24 26
|
nsyl |
|
| 28 |
23 27
|
eldifd |
|
| 29 |
13 14 16 28
|
fvdifsupp |
|
| 30 |
5
|
fsuppimpd |
|
| 31 |
30
|
adantr |
|
| 32 |
|
imafi2 |
|
| 33 |
31 32
|
syl |
|
| 34 |
7
|
ad2antrr |
|
| 35 |
22
|
adantl |
|
| 36 |
34 35
|
ffvelcdmd |
|
| 37 |
|
suppssdm |
|
| 38 |
37 7
|
fssdm |
|
| 39 |
38
|
adantr |
|
| 40 |
|
imass1 |
|
| 41 |
39 40
|
syl |
|
| 42 |
2 3 9 11 29 33 36 41
|
gsummptres2 |
|
| 43 |
42
|
mpteq2dva |
|
| 44 |
43
|
oveq2d |
|
| 45 |
8
|
dmexd |
|
| 46 |
12
|
ad2antrr |
|
| 47 |
8
|
ad2antrr |
|
| 48 |
15
|
a1i |
|
| 49 |
22
|
adantl |
|
| 50 |
|
simplr |
|
| 51 |
50
|
eldifbd |
|
| 52 |
19 20
|
opeldm |
|
| 53 |
51 52
|
nsyl |
|
| 54 |
49 53
|
eldifd |
|
| 55 |
46 47 48 54
|
fvdifsupp |
|
| 56 |
55
|
mpteq2dva |
|
| 57 |
56
|
oveq2d |
|
| 58 |
6
|
cmnmndd |
|
| 59 |
8
|
adantr |
|
| 60 |
59
|
imaexd |
|
| 61 |
3
|
gsumz |
|
| 62 |
58 60 61
|
syl2an2r |
|
| 63 |
57 62
|
eqtrd |
|
| 64 |
|
dmfi |
|
| 65 |
30 64
|
syl |
|
| 66 |
6
|
adantr |
|
| 67 |
8
|
adantr |
|
| 68 |
67
|
imaexd |
|
| 69 |
7
|
ad2antrr |
|
| 70 |
22
|
adantl |
|
| 71 |
69 70
|
ffvelcdmd |
|
| 72 |
71
|
fmpttd |
|
| 73 |
68
|
mptexd |
|
| 74 |
72
|
ffnd |
|
| 75 |
15
|
a1i |
|
| 76 |
30
|
adantr |
|
| 77 |
76 32
|
syl |
|
| 78 |
|
eqid |
|
| 79 |
|
simp-4l |
|
| 80 |
|
simp-4r |
|
| 81 |
|
simpr |
|
| 82 |
|
simpllr |
|
| 83 |
81 82
|
eqeltrd |
|
| 84 |
|
simplr |
|
| 85 |
81 84
|
eqneltrd |
|
| 86 |
12
|
ad3antrrr |
|
| 87 |
8
|
ad3antrrr |
|
| 88 |
15
|
a1i |
|
| 89 |
70
|
adantr |
|
| 90 |
26
|
con3i |
|
| 91 |
90
|
adantl |
|
| 92 |
89 91
|
eldifd |
|
| 93 |
86 87 88 92
|
fvdifsupp |
|
| 94 |
79 80 83 85 93
|
syl1111anc |
|
| 95 |
|
simplr |
|
| 96 |
15
|
a1i |
|
| 97 |
78 94 95 96
|
fvmptd2 |
|
| 98 |
97
|
ex |
|
| 99 |
98
|
orrd |
|
| 100 |
73 74 75 77 99
|
finnzfsuppd |
|
| 101 |
2 3 66 68 72 100
|
gsumcl |
|
| 102 |
|
dmss |
|
| 103 |
38 102
|
syl |
|
| 104 |
2 3 6 45 63 65 101 103
|
gsummptres2 |
|
| 105 |
7 38
|
feqresmpt |
|
| 106 |
105
|
oveq2d |
|
| 107 |
|
ssidd |
|
| 108 |
2 3 6 8 7 107 5
|
gsumres |
|
| 109 |
|
nfcv |
|
| 110 |
|
fveq2 |
|
| 111 |
|
relss |
|
| 112 |
38 4 111
|
sylc |
|
| 113 |
7
|
adantr |
|
| 114 |
38
|
sselda |
|
| 115 |
113 114
|
ffvelcdmd |
|
| 116 |
109 1 2 110 112 30 6 115
|
gsummpt2d |
|
| 117 |
106 108 116
|
3eqtr3d |
|
| 118 |
44 104 117
|
3eqtr4rd |
|