Metamath Proof Explorer


Theorem fnfvor

Description: Relation between two functions implies the same relation for the function value at a given X . See also fnfvof . (Contributed by Thierry Arnoux, 15-Jan-2026)

Ref Expression
Hypotheses fnfvor.1 ( 𝜑𝐹 Fn 𝐴 )
fnfvor.2 ( 𝜑𝐺 Fn 𝐴 )
fnfvor.3 ( 𝜑𝐴𝑉 )
fnfvor.4 ( 𝜑𝐹r 𝑅 𝐺 )
fnfvor.5 ( 𝜑𝑋𝐴 )
Assertion fnfvor ( 𝜑 → ( 𝐹𝑋 ) 𝑅 ( 𝐺𝑋 ) )

Proof

Step Hyp Ref Expression
1 fnfvor.1 ( 𝜑𝐹 Fn 𝐴 )
2 fnfvor.2 ( 𝜑𝐺 Fn 𝐴 )
3 fnfvor.3 ( 𝜑𝐴𝑉 )
4 fnfvor.4 ( 𝜑𝐹r 𝑅 𝐺 )
5 fnfvor.5 ( 𝜑𝑋𝐴 )
6 fveq2 ( 𝑥 = 𝑋 → ( 𝐹𝑥 ) = ( 𝐹𝑋 ) )
7 fveq2 ( 𝑥 = 𝑋 → ( 𝐺𝑥 ) = ( 𝐺𝑋 ) )
8 6 7 breq12d ( 𝑥 = 𝑋 → ( ( 𝐹𝑥 ) 𝑅 ( 𝐺𝑥 ) ↔ ( 𝐹𝑋 ) 𝑅 ( 𝐺𝑋 ) ) )
9 inidm ( 𝐴𝐴 ) = 𝐴
10 eqidd ( ( 𝜑𝑥𝐴 ) → ( 𝐹𝑥 ) = ( 𝐹𝑥 ) )
11 eqidd ( ( 𝜑𝑥𝐴 ) → ( 𝐺𝑥 ) = ( 𝐺𝑥 ) )
12 1 2 3 3 9 10 11 ofrfval ( 𝜑 → ( 𝐹r 𝑅 𝐺 ↔ ∀ 𝑥𝐴 ( 𝐹𝑥 ) 𝑅 ( 𝐺𝑥 ) ) )
13 4 12 mpbid ( 𝜑 → ∀ 𝑥𝐴 ( 𝐹𝑥 ) 𝑅 ( 𝐺𝑥 ) )
14 8 13 5 rspcdva ( 𝜑 → ( 𝐹𝑋 ) 𝑅 ( 𝐺𝑋 ) )