| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnfvor.1 |
⊢ ( 𝜑 → 𝐹 Fn 𝐴 ) |
| 2 |
|
fnfvor.2 |
⊢ ( 𝜑 → 𝐺 Fn 𝐴 ) |
| 3 |
|
fnfvor.3 |
⊢ ( 𝜑 → 𝐴 ∈ 𝑉 ) |
| 4 |
|
fnfvor.4 |
⊢ ( 𝜑 → 𝐹 ∘r 𝑅 𝐺 ) |
| 5 |
|
fnfvor.5 |
⊢ ( 𝜑 → 𝑋 ∈ 𝐴 ) |
| 6 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑋 ) ) |
| 7 |
|
fveq2 |
⊢ ( 𝑥 = 𝑋 → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑋 ) ) |
| 8 |
6 7
|
breq12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ↔ ( 𝐹 ‘ 𝑋 ) 𝑅 ( 𝐺 ‘ 𝑋 ) ) ) |
| 9 |
|
inidm |
⊢ ( 𝐴 ∩ 𝐴 ) = 𝐴 |
| 10 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐹 ‘ 𝑥 ) = ( 𝐹 ‘ 𝑥 ) ) |
| 11 |
|
eqidd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( 𝐺 ‘ 𝑥 ) = ( 𝐺 ‘ 𝑥 ) ) |
| 12 |
1 2 3 3 9 10 11
|
ofrfval |
⊢ ( 𝜑 → ( 𝐹 ∘r 𝑅 𝐺 ↔ ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) ) |
| 13 |
4 12
|
mpbid |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 ( 𝐹 ‘ 𝑥 ) 𝑅 ( 𝐺 ‘ 𝑥 ) ) |
| 14 |
8 13 5
|
rspcdva |
⊢ ( 𝜑 → ( 𝐹 ‘ 𝑋 ) 𝑅 ( 𝐺 ‘ 𝑋 ) ) |