| Step |
Hyp |
Ref |
Expression |
| 1 |
|
fnfvor.1 |
|- ( ph -> F Fn A ) |
| 2 |
|
fnfvor.2 |
|- ( ph -> G Fn A ) |
| 3 |
|
fnfvor.3 |
|- ( ph -> A e. V ) |
| 4 |
|
fnfvor.4 |
|- ( ph -> F oR R G ) |
| 5 |
|
fnfvor.5 |
|- ( ph -> X e. A ) |
| 6 |
|
fveq2 |
|- ( x = X -> ( F ` x ) = ( F ` X ) ) |
| 7 |
|
fveq2 |
|- ( x = X -> ( G ` x ) = ( G ` X ) ) |
| 8 |
6 7
|
breq12d |
|- ( x = X -> ( ( F ` x ) R ( G ` x ) <-> ( F ` X ) R ( G ` X ) ) ) |
| 9 |
|
inidm |
|- ( A i^i A ) = A |
| 10 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> ( F ` x ) = ( F ` x ) ) |
| 11 |
|
eqidd |
|- ( ( ph /\ x e. A ) -> ( G ` x ) = ( G ` x ) ) |
| 12 |
1 2 3 3 9 10 11
|
ofrfval |
|- ( ph -> ( F oR R G <-> A. x e. A ( F ` x ) R ( G ` x ) ) ) |
| 13 |
4 12
|
mpbid |
|- ( ph -> A. x e. A ( F ` x ) R ( G ` x ) ) |
| 14 |
8 13 5
|
rspcdva |
|- ( ph -> ( F ` X ) R ( G ` X ) ) |