Metamath Proof Explorer


Theorem fnfvor

Description: Relation between two functions implies the same relation for the function value at a given X . See also fnfvof . (Contributed by Thierry Arnoux, 15-Jan-2026)

Ref Expression
Hypotheses fnfvor.1 φ F Fn A
fnfvor.2 φ G Fn A
fnfvor.3 φ A V
fnfvor.4 φ F R f G
fnfvor.5 φ X A
Assertion fnfvor φ F X R G X

Proof

Step Hyp Ref Expression
1 fnfvor.1 φ F Fn A
2 fnfvor.2 φ G Fn A
3 fnfvor.3 φ A V
4 fnfvor.4 φ F R f G
5 fnfvor.5 φ X A
6 fveq2 x = X F x = F X
7 fveq2 x = X G x = G X
8 6 7 breq12d x = X F x R G x F X R G X
9 inidm A A = A
10 eqidd φ x A F x = F x
11 eqidd φ x A G x = G x
12 1 2 3 3 9 10 11 ofrfval φ F R f G x A F x R G x
13 4 12 mpbid φ x A F x R G x
14 8 13 5 rspcdva φ F X R G X