| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issply.s |
⊢ 𝑆 = ( SymGrp ‘ 𝐼 ) |
| 2 |
|
issply.p |
⊢ 𝑃 = ( Base ‘ 𝑆 ) |
| 3 |
|
issply.m |
⊢ 𝑀 = ( Base ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 4 |
|
issply.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 5 |
|
issply.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 6 |
|
issply.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
| 7 |
|
issply.f |
⊢ ( 𝜑 → 𝐹 ∈ 𝑀 ) |
| 8 |
|
issply.1 |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ 𝑥 ∈ 𝐷 ) → ( 𝐹 ‘ ( 𝑥 ∘ 𝑝 ) ) = ( 𝐹 ‘ 𝑥 ) ) |
| 9 |
8
|
mpteq2dva |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ ( 𝑥 ∘ 𝑝 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 10 |
|
coeq2 |
⊢ ( 𝑐 = 𝑑 → ( 𝑦 ∘ 𝑐 ) = ( 𝑦 ∘ 𝑑 ) ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝑐 = 𝑑 → ( 𝑒 ‘ ( 𝑦 ∘ 𝑐 ) ) = ( 𝑒 ‘ ( 𝑦 ∘ 𝑑 ) ) ) |
| 12 |
11
|
mpteq2dv |
⊢ ( 𝑐 = 𝑑 → ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑒 ‘ ( 𝑦 ∘ 𝑐 ) ) ) = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑒 ‘ ( 𝑦 ∘ 𝑑 ) ) ) ) |
| 13 |
|
fveq1 |
⊢ ( 𝑒 = 𝑓 → ( 𝑒 ‘ ( 𝑦 ∘ 𝑑 ) ) = ( 𝑓 ‘ ( 𝑦 ∘ 𝑑 ) ) ) |
| 14 |
13
|
mpteq2dv |
⊢ ( 𝑒 = 𝑓 → ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑒 ‘ ( 𝑦 ∘ 𝑑 ) ) ) = ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑦 ∘ 𝑑 ) ) ) ) |
| 15 |
12 14
|
cbvmpov |
⊢ ( 𝑐 ∈ 𝑃 , 𝑒 ∈ 𝑀 ↦ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑒 ‘ ( 𝑦 ∘ 𝑐 ) ) ) ) = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑦 ∘ 𝑑 ) ) ) ) |
| 16 |
|
coeq1 |
⊢ ( 𝑦 = 𝑥 → ( 𝑦 ∘ 𝑑 ) = ( 𝑥 ∘ 𝑑 ) ) |
| 17 |
16
|
fveq2d |
⊢ ( 𝑦 = 𝑥 → ( 𝑓 ‘ ( 𝑦 ∘ 𝑑 ) ) = ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) |
| 18 |
17
|
cbvmptv |
⊢ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑦 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) |
| 19 |
18
|
a1i |
⊢ ( ( 𝑑 ∈ 𝑃 ∧ 𝑓 ∈ 𝑀 ) → ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑦 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) |
| 20 |
19
|
mpoeq3ia |
⊢ ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑦 ∘ 𝑑 ) ) ) ) = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) |
| 21 |
15 20
|
eqtri |
⊢ ( 𝑐 ∈ 𝑃 , 𝑒 ∈ 𝑀 ↦ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑒 ‘ ( 𝑦 ∘ 𝑐 ) ) ) ) = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) |
| 22 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( 𝑐 ∈ 𝑃 , 𝑒 ∈ 𝑀 ↦ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑒 ‘ ( 𝑦 ∘ 𝑐 ) ) ) ) = ( 𝑑 ∈ 𝑃 , 𝑓 ∈ 𝑀 ↦ ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) ) ) |
| 23 |
4
|
eqcomi |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } = 𝐷 |
| 24 |
23
|
a1i |
⊢ ( ( 𝑑 = 𝑝 ∧ 𝑓 = 𝐹 ) → { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } = 𝐷 ) |
| 25 |
|
simpr |
⊢ ( ( 𝑑 = 𝑝 ∧ 𝑓 = 𝐹 ) → 𝑓 = 𝐹 ) |
| 26 |
|
coeq2 |
⊢ ( 𝑑 = 𝑝 → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝑝 ) ) |
| 27 |
26
|
adantr |
⊢ ( ( 𝑑 = 𝑝 ∧ 𝑓 = 𝐹 ) → ( 𝑥 ∘ 𝑑 ) = ( 𝑥 ∘ 𝑝 ) ) |
| 28 |
25 27
|
fveq12d |
⊢ ( ( 𝑑 = 𝑝 ∧ 𝑓 = 𝐹 ) → ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) = ( 𝐹 ‘ ( 𝑥 ∘ 𝑝 ) ) ) |
| 29 |
24 28
|
mpteq12dv |
⊢ ( ( 𝑑 = 𝑝 ∧ 𝑓 = 𝐹 ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ ( 𝑥 ∘ 𝑝 ) ) ) ) |
| 30 |
29
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) ∧ ( 𝑑 = 𝑝 ∧ 𝑓 = 𝐹 ) ) → ( 𝑥 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑓 ‘ ( 𝑥 ∘ 𝑑 ) ) ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ ( 𝑥 ∘ 𝑝 ) ) ) ) |
| 31 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝑝 ∈ 𝑃 ) |
| 32 |
7
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝐹 ∈ 𝑀 ) |
| 33 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 34 |
4 33
|
rabex2 |
⊢ 𝐷 ∈ V |
| 35 |
34
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝐷 ∈ V ) |
| 36 |
35
|
mptexd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ ( 𝑥 ∘ 𝑝 ) ) ) ∈ V ) |
| 37 |
22 30 31 32 36
|
ovmpod |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( 𝑝 ( 𝑐 ∈ 𝑃 , 𝑒 ∈ 𝑀 ↦ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑒 ‘ ( 𝑦 ∘ 𝑐 ) ) ) ) 𝐹 ) = ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ ( 𝑥 ∘ 𝑝 ) ) ) ) |
| 38 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) |
| 39 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 40 |
4
|
psrbasfsupp |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 41 |
38 39 3 40 32
|
mplelf |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝐹 : 𝐷 ⟶ ( Base ‘ 𝑅 ) ) |
| 42 |
41
|
feqmptd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → 𝐹 = ( 𝑥 ∈ 𝐷 ↦ ( 𝐹 ‘ 𝑥 ) ) ) |
| 43 |
9 37 42
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ 𝑃 ) → ( 𝑝 ( 𝑐 ∈ 𝑃 , 𝑒 ∈ 𝑀 ↦ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑒 ‘ ( 𝑦 ∘ 𝑐 ) ) ) ) 𝐹 ) = 𝐹 ) |
| 44 |
43
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑝 ∈ 𝑃 ( 𝑝 ( 𝑐 ∈ 𝑃 , 𝑒 ∈ 𝑀 ↦ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑒 ‘ ( 𝑦 ∘ 𝑐 ) ) ) ) 𝐹 ) = 𝐹 ) |
| 45 |
1 2 3 21 5
|
mplvrpmga |
⊢ ( 𝜑 → ( 𝑐 ∈ 𝑃 , 𝑒 ∈ 𝑀 ↦ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑒 ‘ ( 𝑦 ∘ 𝑐 ) ) ) ) ∈ ( 𝑆 GrpAct 𝑀 ) ) |
| 46 |
2 45 7
|
isfxp |
⊢ ( 𝜑 → ( 𝐹 ∈ ( 𝑀 FixPts ( 𝑐 ∈ 𝑃 , 𝑒 ∈ 𝑀 ↦ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑒 ‘ ( 𝑦 ∘ 𝑐 ) ) ) ) ) ↔ ∀ 𝑝 ∈ 𝑃 ( 𝑝 ( 𝑐 ∈ 𝑃 , 𝑒 ∈ 𝑀 ↦ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑒 ‘ ( 𝑦 ∘ 𝑐 ) ) ) ) 𝐹 ) = 𝐹 ) ) |
| 47 |
44 46
|
mpbird |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝑀 FixPts ( 𝑐 ∈ 𝑃 , 𝑒 ∈ 𝑀 ↦ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑒 ‘ ( 𝑦 ∘ 𝑐 ) ) ) ) ) ) |
| 48 |
1 2 3 21 5 6
|
splyval |
⊢ ( 𝜑 → ( 𝐼 SymPoly 𝑅 ) = ( 𝑀 FixPts ( 𝑐 ∈ 𝑃 , 𝑒 ∈ 𝑀 ↦ ( 𝑦 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( 𝑒 ‘ ( 𝑦 ∘ 𝑐 ) ) ) ) ) ) |
| 49 |
47 48
|
eleqtrrd |
⊢ ( 𝜑 → 𝐹 ∈ ( 𝐼 SymPoly 𝑅 ) ) |