Metamath Proof Explorer


Theorem esplyval

Description: The elementary polynomials for a given index I of variables and base ring R . (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses esplyval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
esplyval.i ( 𝜑𝐼𝑉 )
esplyval.r ( 𝜑𝑅𝑊 )
Assertion esplyval ( 𝜑 → ( 𝐼 eSymPoly 𝑅 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) )

Proof

Step Hyp Ref Expression
1 esplyval.d 𝐷 = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 }
2 esplyval.i ( 𝜑𝐼𝑉 )
3 esplyval.r ( 𝜑𝑅𝑊 )
4 df-esply eSymPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) )
5 4 a1i ( 𝜑 → eSymPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) ) )
6 fveq2 ( 𝑟 = 𝑅 → ( ℤRHom ‘ 𝑟 ) = ( ℤRHom ‘ 𝑅 ) )
7 6 adantl ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( ℤRHom ‘ 𝑟 ) = ( ℤRHom ‘ 𝑅 ) )
8 oveq2 ( 𝑖 = 𝐼 → ( ℕ0m 𝑖 ) = ( ℕ0m 𝐼 ) )
9 8 rabeqdv ( 𝑖 = 𝐼 → { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } = { ∈ ( ℕ0m 𝐼 ) ∣ finSupp 0 } )
10 9 1 eqtr4di ( 𝑖 = 𝐼 → { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } = 𝐷 )
11 10 fveq2d ( 𝑖 = 𝐼 → ( 𝟭 ‘ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ) = ( 𝟭 ‘ 𝐷 ) )
12 11 adantr ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 𝟭 ‘ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ) = ( 𝟭 ‘ 𝐷 ) )
13 fveq2 ( 𝑖 = 𝐼 → ( 𝟭 ‘ 𝑖 ) = ( 𝟭 ‘ 𝐼 ) )
14 13 adantr ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 𝟭 ‘ 𝑖 ) = ( 𝟭 ‘ 𝐼 ) )
15 pweq ( 𝑖 = 𝐼 → 𝒫 𝑖 = 𝒫 𝐼 )
16 15 rabeqdv ( 𝑖 = 𝐼 → { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } = { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } )
17 16 adantr ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } = { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } )
18 14 17 imaeq12d ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) = ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) )
19 12 18 fveq12d ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( ( 𝟭 ‘ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) = ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) )
20 7 19 coeq12d ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) )
21 20 mpteq2dv ( ( 𝑖 = 𝐼𝑟 = 𝑅 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) )
22 21 adantl ( ( 𝜑 ∧ ( 𝑖 = 𝐼𝑟 = 𝑅 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ∈ ( ℕ0m 𝑖 ) ∣ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) )
23 2 elexd ( 𝜑𝐼 ∈ V )
24 3 elexd ( 𝜑𝑅 ∈ V )
25 nn0ex 0 ∈ V
26 25 mptex ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) ∈ V
27 26 a1i ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) ∈ V )
28 5 22 23 24 27 ovmpod ( 𝜑 → ( 𝐼 eSymPoly 𝑅 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) )