| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 2 |
|
esplyval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 3 |
|
esplyval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
| 4 |
|
df-esply |
⊢ eSymPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) ) |
| 5 |
4
|
a1i |
⊢ ( 𝜑 → eSymPoly = ( 𝑖 ∈ V , 𝑟 ∈ V ↦ ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) ) ) |
| 6 |
|
fveq2 |
⊢ ( 𝑟 = 𝑅 → ( ℤRHom ‘ 𝑟 ) = ( ℤRHom ‘ 𝑅 ) ) |
| 7 |
6
|
adantl |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( ℤRHom ‘ 𝑟 ) = ( ℤRHom ‘ 𝑅 ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑖 = 𝐼 → ( ℕ0 ↑m 𝑖 ) = ( ℕ0 ↑m 𝐼 ) ) |
| 9 |
8
|
rabeqdv |
⊢ ( 𝑖 = 𝐼 → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 10 |
9 1
|
eqtr4di |
⊢ ( 𝑖 = 𝐼 → { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } = 𝐷 ) |
| 11 |
10
|
fveq2d |
⊢ ( 𝑖 = 𝐼 → ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ) = ( 𝟭 ‘ 𝐷 ) ) |
| 12 |
11
|
adantr |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ) = ( 𝟭 ‘ 𝐷 ) ) |
| 13 |
|
fveq2 |
⊢ ( 𝑖 = 𝐼 → ( 𝟭 ‘ 𝑖 ) = ( 𝟭 ‘ 𝐼 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝟭 ‘ 𝑖 ) = ( 𝟭 ‘ 𝐼 ) ) |
| 15 |
|
pweq |
⊢ ( 𝑖 = 𝐼 → 𝒫 𝑖 = 𝒫 𝐼 ) |
| 16 |
15
|
rabeqdv |
⊢ ( 𝑖 = 𝐼 → { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } = { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } = { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) |
| 18 |
14 17
|
imaeq12d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) = ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) |
| 19 |
12 18
|
fveq12d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) = ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) |
| 20 |
7 19
|
coeq12d |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) |
| 21 |
20
|
mpteq2dv |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) ) |
| 22 |
21
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑖 = 𝐼 ∧ 𝑟 = 𝑅 ) ) → ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑟 ) ∘ ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝑖 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝑖 ) “ { 𝑐 ∈ 𝒫 𝑖 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) ) |
| 23 |
2
|
elexd |
⊢ ( 𝜑 → 𝐼 ∈ V ) |
| 24 |
3
|
elexd |
⊢ ( 𝜑 → 𝑅 ∈ V ) |
| 25 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 26 |
25
|
mptex |
⊢ ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) ∈ V |
| 27 |
26
|
a1i |
⊢ ( 𝜑 → ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) ∈ V ) |
| 28 |
5 22 23 24 27
|
ovmpod |
⊢ ( 𝜑 → ( 𝐼 eSymPoly 𝑅 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) ) |