Metamath Proof Explorer


Theorem esplyval

Description: The elementary polynomials for a given index I of variables and base ring R . (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses esplyval.d D = h 0 I | finSupp 0 h
esplyval.i φ I V
esplyval.r φ R W
Assertion esplyval Could not format assertion : No typesetting found for |- ( ph -> ( I eSymPoly R ) = ( k e. NN0 |-> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 esplyval.d D = h 0 I | finSupp 0 h
2 esplyval.i φ I V
3 esplyval.r φ R W
4 df-esply Could not format eSymPoly = ( i e. _V , r e. _V |-> ( k e. NN0 |-> ( ( ZRHom ` r ) o. ( ( _Ind ` { h e. ( NN0 ^m i ) | h finSupp 0 } ) ` ( ( _Ind ` i ) " { c e. ~P i | ( # ` c ) = k } ) ) ) ) ) : No typesetting found for |- eSymPoly = ( i e. _V , r e. _V |-> ( k e. NN0 |-> ( ( ZRHom ` r ) o. ( ( _Ind ` { h e. ( NN0 ^m i ) | h finSupp 0 } ) ` ( ( _Ind ` i ) " { c e. ~P i | ( # ` c ) = k } ) ) ) ) ) with typecode |-
5 4 a1i Could not format ( ph -> eSymPoly = ( i e. _V , r e. _V |-> ( k e. NN0 |-> ( ( ZRHom ` r ) o. ( ( _Ind ` { h e. ( NN0 ^m i ) | h finSupp 0 } ) ` ( ( _Ind ` i ) " { c e. ~P i | ( # ` c ) = k } ) ) ) ) ) ) : No typesetting found for |- ( ph -> eSymPoly = ( i e. _V , r e. _V |-> ( k e. NN0 |-> ( ( ZRHom ` r ) o. ( ( _Ind ` { h e. ( NN0 ^m i ) | h finSupp 0 } ) ` ( ( _Ind ` i ) " { c e. ~P i | ( # ` c ) = k } ) ) ) ) ) ) with typecode |-
6 fveq2 r = R ℤRHom r = ℤRHom R
7 6 adantl i = I r = R ℤRHom r = ℤRHom R
8 oveq2 i = I 0 i = 0 I
9 8 rabeqdv i = I h 0 i | finSupp 0 h = h 0 I | finSupp 0 h
10 9 1 eqtr4di i = I h 0 i | finSupp 0 h = D
11 10 fveq2d i = I 𝟙 h 0 i | finSupp 0 h = 𝟙 D
12 11 adantr i = I r = R 𝟙 h 0 i | finSupp 0 h = 𝟙 D
13 fveq2 i = I 𝟙 i = 𝟙 I
14 13 adantr i = I r = R 𝟙 i = 𝟙 I
15 pweq i = I 𝒫 i = 𝒫 I
16 15 rabeqdv i = I c 𝒫 i | c = k = c 𝒫 I | c = k
17 16 adantr i = I r = R c 𝒫 i | c = k = c 𝒫 I | c = k
18 14 17 imaeq12d i = I r = R 𝟙 i c 𝒫 i | c = k = 𝟙 I c 𝒫 I | c = k
19 12 18 fveq12d i = I r = R 𝟙 h 0 i | finSupp 0 h 𝟙 i c 𝒫 i | c = k = 𝟙 D 𝟙 I c 𝒫 I | c = k
20 7 19 coeq12d i = I r = R ℤRHom r 𝟙 h 0 i | finSupp 0 h 𝟙 i c 𝒫 i | c = k = ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = k
21 20 mpteq2dv i = I r = R k 0 ℤRHom r 𝟙 h 0 i | finSupp 0 h 𝟙 i c 𝒫 i | c = k = k 0 ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = k
22 21 adantl φ i = I r = R k 0 ℤRHom r 𝟙 h 0 i | finSupp 0 h 𝟙 i c 𝒫 i | c = k = k 0 ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = k
23 2 elexd φ I V
24 3 elexd φ R V
25 nn0ex 0 V
26 25 mptex k 0 ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = k V
27 26 a1i φ k 0 ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = k V
28 5 22 23 24 27 ovmpod Could not format ( ph -> ( I eSymPoly R ) = ( k e. NN0 |-> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) ) ) : No typesetting found for |- ( ph -> ( I eSymPoly R ) = ( k e. NN0 |-> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) ) ) with typecode |-