Metamath Proof Explorer


Theorem esplyfval

Description: The K -th elementary polynomial for a given index I of variables and base ring R . (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses esplyval.d D = h 0 I | finSupp 0 h
esplyval.i φ I V
esplyval.r φ R W
esplyfval.k φ K 0
Assertion esplyfval Could not format assertion : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 esplyval.d D = h 0 I | finSupp 0 h
2 esplyval.i φ I V
3 esplyval.r φ R W
4 esplyfval.k φ K 0
5 eqeq2 k = K c = k c = K
6 5 rabbidv k = K c 𝒫 I | c = k = c 𝒫 I | c = K
7 6 imaeq2d k = K 𝟙 I c 𝒫 I | c = k = 𝟙 I c 𝒫 I | c = K
8 7 fveq2d k = K 𝟙 D 𝟙 I c 𝒫 I | c = k = 𝟙 D 𝟙 I c 𝒫 I | c = K
9 8 coeq2d k = K ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = k = ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K
10 1 2 3 esplyval Could not format ( ph -> ( I eSymPoly R ) = ( k e. NN0 |-> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) ) ) : No typesetting found for |- ( ph -> ( I eSymPoly R ) = ( k e. NN0 |-> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) ) ) with typecode |-
11 fvexd φ ℤRHom R V
12 fvexd φ 𝟙 D 𝟙 I c 𝒫 I | c = K V
13 11 12 coexd φ ℤRHom R 𝟙 D 𝟙 I c 𝒫 I | c = K V
14 9 10 4 13 fvmptd4 Could not format ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) : No typesetting found for |- ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) with typecode |-