| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyval.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 2 |
|
esplyval.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 3 |
|
esplyval.r |
⊢ ( 𝜑 → 𝑅 ∈ 𝑊 ) |
| 4 |
|
esplyfval.k |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 5 |
|
eqeq2 |
⊢ ( 𝑘 = 𝐾 → ( ( ♯ ‘ 𝑐 ) = 𝑘 ↔ ( ♯ ‘ 𝑐 ) = 𝐾 ) ) |
| 6 |
5
|
rabbidv |
⊢ ( 𝑘 = 𝐾 → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } = { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) |
| 7 |
6
|
imaeq2d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) = ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) |
| 8 |
7
|
fveq2d |
⊢ ( 𝑘 = 𝐾 → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) = ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) |
| 9 |
8
|
coeq2d |
⊢ ( 𝑘 = 𝐾 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ) |
| 10 |
1 2 3
|
esplyval |
⊢ ( 𝜑 → ( 𝐼 eSymPoly 𝑅 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) ) |
| 11 |
|
fvexd |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝑅 ) ∈ V ) |
| 12 |
|
fvexd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ∈ V ) |
| 13 |
11 12
|
coexd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ∈ V ) |
| 14 |
9 10 4 13
|
fvmptd4 |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ) |