| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyfval0.i |
⊢ ( 𝜑 → 𝐼 ∈ 𝑉 ) |
| 2 |
|
esplyfval0.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 3 |
|
esplyfval0.0 |
⊢ 𝑈 = ( 1r ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 4 |
|
eqid |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 5 |
4 1 2
|
esplyval |
⊢ ( 𝜑 → ( 𝐼 eSymPoly 𝑅 ) = ( 𝑘 ∈ ℕ0 ↦ ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) ) ) |
| 6 |
|
eqeq2 |
⊢ ( 𝑘 = 0 → ( ( ♯ ‘ 𝑐 ) = 𝑘 ↔ ( ♯ ‘ 𝑐 ) = 0 ) ) |
| 7 |
6
|
rabbidv |
⊢ ( 𝑘 = 0 → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } = { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 0 } ) |
| 8 |
7
|
imaeq2d |
⊢ ( 𝑘 = 0 → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) = ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 0 } ) ) |
| 9 |
8
|
fveq2d |
⊢ ( 𝑘 = 0 → ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) = ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 0 } ) ) ) |
| 10 |
9
|
coeq2d |
⊢ ( 𝑘 = 0 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 0 } ) ) ) ) |
| 11 |
|
fvif |
⊢ ( ( ℤRHom ‘ 𝑅 ) ‘ if ( 𝑓 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = if ( 𝑓 = ( 𝐼 × { 0 } ) , ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) , ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) ) |
| 12 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
| 13 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 14 |
12 13
|
zrh1 |
⊢ ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
| 15 |
2 14
|
syl |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) = ( 1r ‘ 𝑅 ) ) |
| 16 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 17 |
12 16
|
zrh0 |
⊢ ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |
| 18 |
2 17
|
syl |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |
| 19 |
15 18
|
ifeq12d |
⊢ ( 𝜑 → if ( 𝑓 = ( 𝐼 × { 0 } ) , ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) , ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) ) = if ( 𝑓 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → if ( 𝑓 = ( 𝐼 × { 0 } ) , ( ( ℤRHom ‘ 𝑅 ) ‘ 1 ) , ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) ) = if ( 𝑓 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 21 |
11 20
|
eqtrid |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( ( ℤRHom ‘ 𝑅 ) ‘ if ( 𝑓 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) = if ( 𝑓 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) |
| 22 |
21
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ if ( 𝑓 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) = ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ if ( 𝑓 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 23 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 1 ∈ ℤ ) |
| 24 |
|
0zd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → 0 ∈ ℤ ) |
| 25 |
23 24
|
ifcld |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → if ( 𝑓 = ( 𝐼 × { 0 } ) , 1 , 0 ) ∈ ℤ ) |
| 26 |
|
fveqeq2 |
⊢ ( 𝑐 = ∅ → ( ( ♯ ‘ 𝑐 ) = 0 ↔ ( ♯ ‘ ∅ ) = 0 ) ) |
| 27 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝐼 |
| 28 |
27
|
a1i |
⊢ ( 𝜑 → ∅ ∈ 𝒫 𝐼 ) |
| 29 |
|
hash0 |
⊢ ( ♯ ‘ ∅ ) = 0 |
| 30 |
29
|
a1i |
⊢ ( 𝜑 → ( ♯ ‘ ∅ ) = 0 ) |
| 31 |
|
hasheq0 |
⊢ ( 𝑐 ∈ 𝒫 𝐼 → ( ( ♯ ‘ 𝑐 ) = 0 ↔ 𝑐 = ∅ ) ) |
| 32 |
31
|
biimpa |
⊢ ( ( 𝑐 ∈ 𝒫 𝐼 ∧ ( ♯ ‘ 𝑐 ) = 0 ) → 𝑐 = ∅ ) |
| 33 |
32
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑐 ∈ 𝒫 𝐼 ) ∧ ( ♯ ‘ 𝑐 ) = 0 ) → 𝑐 = ∅ ) |
| 34 |
26 28 30 33
|
rabeqsnd |
⊢ ( 𝜑 → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 0 } = { ∅ } ) |
| 35 |
34
|
imaeq2d |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 0 } ) = ( ( 𝟭 ‘ 𝐼 ) “ { ∅ } ) ) |
| 36 |
|
indf1o |
⊢ ( 𝐼 ∈ 𝑉 → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 –1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 37 |
|
f1of |
⊢ ( ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 –1-1-onto→ ( { 0 , 1 } ↑m 𝐼 ) → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 38 |
1 36 37
|
3syl |
⊢ ( 𝜑 → ( 𝟭 ‘ 𝐼 ) : 𝒫 𝐼 ⟶ ( { 0 , 1 } ↑m 𝐼 ) ) |
| 39 |
38
|
ffnd |
⊢ ( 𝜑 → ( 𝟭 ‘ 𝐼 ) Fn 𝒫 𝐼 ) |
| 40 |
39 28
|
fnimasnd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) “ { ∅ } ) = { ( ( 𝟭 ‘ 𝐼 ) ‘ ∅ ) } ) |
| 41 |
|
indconst0 |
⊢ ( 𝐼 ∈ 𝑉 → ( ( 𝟭 ‘ 𝐼 ) ‘ ∅ ) = ( 𝐼 × { 0 } ) ) |
| 42 |
1 41
|
syl |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) ‘ ∅ ) = ( 𝐼 × { 0 } ) ) |
| 43 |
42
|
sneqd |
⊢ ( 𝜑 → { ( ( 𝟭 ‘ 𝐼 ) ‘ ∅ ) } = { ( 𝐼 × { 0 } ) } ) |
| 44 |
35 40 43
|
3eqtrd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 0 } ) = { ( 𝐼 × { 0 } ) } ) |
| 45 |
44
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 0 } ) ) = ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ‘ { ( 𝐼 × { 0 } ) } ) ) |
| 46 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 47 |
46
|
rabex |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∈ V |
| 48 |
|
breq1 |
⊢ ( ℎ = ( 𝐼 × { 0 } ) → ( ℎ finSupp 0 ↔ ( 𝐼 × { 0 } ) finSupp 0 ) ) |
| 49 |
|
nn0ex |
⊢ ℕ0 ∈ V |
| 50 |
49
|
a1i |
⊢ ( 𝜑 → ℕ0 ∈ V ) |
| 51 |
|
c0ex |
⊢ 0 ∈ V |
| 52 |
51
|
fconst |
⊢ ( 𝐼 × { 0 } ) : 𝐼 ⟶ { 0 } |
| 53 |
52
|
a1i |
⊢ ( 𝜑 → ( 𝐼 × { 0 } ) : 𝐼 ⟶ { 0 } ) |
| 54 |
|
0nn0 |
⊢ 0 ∈ ℕ0 |
| 55 |
54
|
a1i |
⊢ ( 𝜑 → 0 ∈ ℕ0 ) |
| 56 |
55
|
snssd |
⊢ ( 𝜑 → { 0 } ⊆ ℕ0 ) |
| 57 |
53 56
|
fssd |
⊢ ( 𝜑 → ( 𝐼 × { 0 } ) : 𝐼 ⟶ ℕ0 ) |
| 58 |
50 1 57
|
elmapdd |
⊢ ( 𝜑 → ( 𝐼 × { 0 } ) ∈ ( ℕ0 ↑m 𝐼 ) ) |
| 59 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 60 |
1 59
|
fczfsuppd |
⊢ ( 𝜑 → ( 𝐼 × { 0 } ) finSupp 0 ) |
| 61 |
48 58 60
|
elrabd |
⊢ ( 𝜑 → ( 𝐼 × { 0 } ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) |
| 62 |
|
indsn |
⊢ ( ( { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ∈ V ∧ ( 𝐼 × { 0 } ) ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) → ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ‘ { ( 𝐼 × { 0 } ) } ) = ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ if ( 𝑓 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |
| 63 |
47 61 62
|
sylancr |
⊢ ( 𝜑 → ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ‘ { ( 𝐼 × { 0 } ) } ) = ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ if ( 𝑓 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |
| 64 |
45 63
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 0 } ) ) = ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ if ( 𝑓 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |
| 65 |
12
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) ) |
| 66 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 67 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 68 |
66 67
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
| 69 |
2 65 68
|
3syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
| 70 |
69
|
feqmptd |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝑅 ) = ( 𝑧 ∈ ℤ ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑧 ) ) ) |
| 71 |
|
fveq2 |
⊢ ( 𝑧 = if ( 𝑓 = ( 𝐼 × { 0 } ) , 1 , 0 ) → ( ( ℤRHom ‘ 𝑅 ) ‘ 𝑧 ) = ( ( ℤRHom ‘ 𝑅 ) ‘ if ( 𝑓 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) |
| 72 |
25 64 70 71
|
fmptco |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 0 } ) ) ) = ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ ( ( ℤRHom ‘ 𝑅 ) ‘ if ( 𝑓 = ( 𝐼 × { 0 } ) , 1 , 0 ) ) ) ) |
| 73 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) |
| 74 |
4
|
psrbasfsupp |
⊢ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 75 |
73 74 16 13 3 1 2
|
mpl1 |
⊢ ( 𝜑 → 𝑈 = ( 𝑓 ∈ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ↦ if ( 𝑓 = ( 𝐼 × { 0 } ) , ( 1r ‘ 𝑅 ) , ( 0g ‘ 𝑅 ) ) ) ) |
| 76 |
22 72 75
|
3eqtr4d |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 0 } ) ) ) = 𝑈 ) |
| 77 |
10 76
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ 𝑘 = 0 ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝑘 } ) ) ) = 𝑈 ) |
| 78 |
3
|
fvexi |
⊢ 𝑈 ∈ V |
| 79 |
78
|
a1i |
⊢ ( 𝜑 → 𝑈 ∈ V ) |
| 80 |
5 77 55 79
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 0 ) = 𝑈 ) |