| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyfval2.d |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ℎ finSupp 0 } |
| 2 |
|
esplyfval2.i |
⊢ ( 𝜑 → 𝐼 ∈ Fin ) |
| 3 |
|
esplyfval2.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 4 |
|
esplyfval2.k |
⊢ ( 𝜑 → 𝐾 ∈ ( ℕ0 ∖ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) ) |
| 5 |
|
esplyfval2.z |
⊢ 𝑍 = ( 0g ‘ ( 𝐼 mPoly 𝑅 ) ) |
| 6 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝒫 𝐼 ) → 𝐼 ∈ Fin ) |
| 7 |
|
elpwi |
⊢ ( 𝑐 ∈ 𝒫 𝐼 → 𝑐 ⊆ 𝐼 ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝒫 𝐼 ) → 𝑐 ⊆ 𝐼 ) |
| 9 |
6 8
|
ssfid |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝒫 𝐼 ) → 𝑐 ∈ Fin ) |
| 10 |
|
hashcl |
⊢ ( 𝑐 ∈ Fin → ( ♯ ‘ 𝑐 ) ∈ ℕ0 ) |
| 11 |
9 10
|
syl |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝒫 𝐼 ) → ( ♯ ‘ 𝑐 ) ∈ ℕ0 ) |
| 12 |
11
|
nn0red |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝒫 𝐼 ) → ( ♯ ‘ 𝑐 ) ∈ ℝ ) |
| 13 |
|
hashcl |
⊢ ( 𝐼 ∈ Fin → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 14 |
2 13
|
syl |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℕ0 ) |
| 15 |
14
|
nn0red |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℝ ) |
| 16 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝒫 𝐼 ) → ( ♯ ‘ 𝐼 ) ∈ ℝ ) |
| 17 |
4
|
eldifad |
⊢ ( 𝜑 → 𝐾 ∈ ℕ0 ) |
| 18 |
17
|
nn0red |
⊢ ( 𝜑 → 𝐾 ∈ ℝ ) |
| 19 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝒫 𝐼 ) → 𝐾 ∈ ℝ ) |
| 20 |
|
hashss |
⊢ ( ( 𝐼 ∈ Fin ∧ 𝑐 ⊆ 𝐼 ) → ( ♯ ‘ 𝑐 ) ≤ ( ♯ ‘ 𝐼 ) ) |
| 21 |
6 8 20
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝒫 𝐼 ) → ( ♯ ‘ 𝑐 ) ≤ ( ♯ ‘ 𝐼 ) ) |
| 22 |
14
|
nn0zd |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) ∈ ℤ ) |
| 23 |
|
nn0diffz0 |
⊢ ( ( ♯ ‘ 𝐼 ) ∈ ℕ0 → ( ℕ0 ∖ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) = ( ℤ≥ ‘ ( ( ♯ ‘ 𝐼 ) + 1 ) ) ) |
| 24 |
14 23
|
syl |
⊢ ( 𝜑 → ( ℕ0 ∖ ( 0 ... ( ♯ ‘ 𝐼 ) ) ) = ( ℤ≥ ‘ ( ( ♯ ‘ 𝐼 ) + 1 ) ) ) |
| 25 |
4 24
|
eleqtrd |
⊢ ( 𝜑 → 𝐾 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐼 ) + 1 ) ) ) |
| 26 |
|
eluzp1l |
⊢ ( ( ( ♯ ‘ 𝐼 ) ∈ ℤ ∧ 𝐾 ∈ ( ℤ≥ ‘ ( ( ♯ ‘ 𝐼 ) + 1 ) ) ) → ( ♯ ‘ 𝐼 ) < 𝐾 ) |
| 27 |
22 25 26
|
syl2anc |
⊢ ( 𝜑 → ( ♯ ‘ 𝐼 ) < 𝐾 ) |
| 28 |
27
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝒫 𝐼 ) → ( ♯ ‘ 𝐼 ) < 𝐾 ) |
| 29 |
12 16 19 21 28
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝒫 𝐼 ) → ( ♯ ‘ 𝑐 ) < 𝐾 ) |
| 30 |
12 29
|
ltned |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝒫 𝐼 ) → ( ♯ ‘ 𝑐 ) ≠ 𝐾 ) |
| 31 |
30
|
neneqd |
⊢ ( ( 𝜑 ∧ 𝑐 ∈ 𝒫 𝐼 ) → ¬ ( ♯ ‘ 𝑐 ) = 𝐾 ) |
| 32 |
31
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑐 ∈ 𝒫 𝐼 ¬ ( ♯ ‘ 𝑐 ) = 𝐾 ) |
| 33 |
|
rabeq0 |
⊢ ( { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } = ∅ ↔ ∀ 𝑐 ∈ 𝒫 𝐼 ¬ ( ♯ ‘ 𝑐 ) = 𝐾 ) |
| 34 |
32 33
|
sylibr |
⊢ ( 𝜑 → { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } = ∅ ) |
| 35 |
34
|
imaeq2d |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) = ( ( 𝟭 ‘ 𝐼 ) “ ∅ ) ) |
| 36 |
|
ima0 |
⊢ ( ( 𝟭 ‘ 𝐼 ) “ ∅ ) = ∅ |
| 37 |
35 36
|
eqtrdi |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) = ∅ ) |
| 38 |
37
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) = ( ( 𝟭 ‘ 𝐷 ) ‘ ∅ ) ) |
| 39 |
|
ovex |
⊢ ( ℕ0 ↑m 𝐼 ) ∈ V |
| 40 |
1 39
|
rabex2 |
⊢ 𝐷 ∈ V |
| 41 |
|
indconst0 |
⊢ ( 𝐷 ∈ V → ( ( 𝟭 ‘ 𝐷 ) ‘ ∅ ) = ( 𝐷 × { 0 } ) ) |
| 42 |
40 41
|
mp1i |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐷 ) ‘ ∅ ) = ( 𝐷 × { 0 } ) ) |
| 43 |
38 42
|
eqtrd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) = ( 𝐷 × { 0 } ) ) |
| 44 |
43
|
coeq2d |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( 𝐷 × { 0 } ) ) ) |
| 45 |
|
eqid |
⊢ ( ℤRHom ‘ 𝑅 ) = ( ℤRHom ‘ 𝑅 ) |
| 46 |
45
|
zrhrhm |
⊢ ( 𝑅 ∈ Ring → ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) ) |
| 47 |
|
zringbas |
⊢ ℤ = ( Base ‘ ℤring ) |
| 48 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 49 |
47 48
|
rhmf |
⊢ ( ( ℤRHom ‘ 𝑅 ) ∈ ( ℤring RingHom 𝑅 ) → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
| 50 |
3 46 49
|
3syl |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝑅 ) : ℤ ⟶ ( Base ‘ 𝑅 ) ) |
| 51 |
50
|
ffnd |
⊢ ( 𝜑 → ( ℤRHom ‘ 𝑅 ) Fn ℤ ) |
| 52 |
|
0zd |
⊢ ( 𝜑 → 0 ∈ ℤ ) |
| 53 |
|
fcoconst |
⊢ ( ( ( ℤRHom ‘ 𝑅 ) Fn ℤ ∧ 0 ∈ ℤ ) → ( ( ℤRHom ‘ 𝑅 ) ∘ ( 𝐷 × { 0 } ) ) = ( 𝐷 × { ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) } ) ) |
| 54 |
51 52 53
|
syl2anc |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( 𝐷 × { 0 } ) ) = ( 𝐷 × { ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) } ) ) |
| 55 |
|
eqid |
⊢ ( 0g ‘ 𝑅 ) = ( 0g ‘ 𝑅 ) |
| 56 |
45 55
|
zrh0 |
⊢ ( 𝑅 ∈ Ring → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |
| 57 |
3 56
|
syl |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) = ( 0g ‘ 𝑅 ) ) |
| 58 |
57
|
sneqd |
⊢ ( 𝜑 → { ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) } = { ( 0g ‘ 𝑅 ) } ) |
| 59 |
58
|
xpeq2d |
⊢ ( 𝜑 → ( 𝐷 × { ( ( ℤRHom ‘ 𝑅 ) ‘ 0 ) } ) = ( 𝐷 × { ( 0g ‘ 𝑅 ) } ) ) |
| 60 |
44 54 59
|
3eqtrd |
⊢ ( 𝜑 → ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) = ( 𝐷 × { ( 0g ‘ 𝑅 ) } ) ) |
| 61 |
1 2 3 17
|
esplyfval |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = ( ( ℤRHom ‘ 𝑅 ) ∘ ( ( 𝟭 ‘ 𝐷 ) ‘ ( ( 𝟭 ‘ 𝐼 ) “ { 𝑐 ∈ 𝒫 𝐼 ∣ ( ♯ ‘ 𝑐 ) = 𝐾 } ) ) ) ) |
| 62 |
|
eqid |
⊢ ( 𝐼 mPoly 𝑅 ) = ( 𝐼 mPoly 𝑅 ) |
| 63 |
1
|
psrbasfsupp |
⊢ 𝐷 = { ℎ ∈ ( ℕ0 ↑m 𝐼 ) ∣ ( ◡ ℎ “ ℕ ) ∈ Fin } |
| 64 |
3
|
ringgrpd |
⊢ ( 𝜑 → 𝑅 ∈ Grp ) |
| 65 |
62 63 55 5 2 64
|
mpl0 |
⊢ ( 𝜑 → 𝑍 = ( 𝐷 × { ( 0g ‘ 𝑅 ) } ) ) |
| 66 |
60 61 65
|
3eqtr4d |
⊢ ( 𝜑 → ( ( 𝐼 eSymPoly 𝑅 ) ‘ 𝐾 ) = 𝑍 ) |