| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyfval2.d |
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 } |
| 2 |
|
esplyfval2.i |
|- ( ph -> I e. Fin ) |
| 3 |
|
esplyfval2.r |
|- ( ph -> R e. Ring ) |
| 4 |
|
esplyfval2.k |
|- ( ph -> K e. ( NN0 \ ( 0 ... ( # ` I ) ) ) ) |
| 5 |
|
esplyfval2.z |
|- Z = ( 0g ` ( I mPoly R ) ) |
| 6 |
2
|
adantr |
|- ( ( ph /\ c e. ~P I ) -> I e. Fin ) |
| 7 |
|
elpwi |
|- ( c e. ~P I -> c C_ I ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ c e. ~P I ) -> c C_ I ) |
| 9 |
6 8
|
ssfid |
|- ( ( ph /\ c e. ~P I ) -> c e. Fin ) |
| 10 |
|
hashcl |
|- ( c e. Fin -> ( # ` c ) e. NN0 ) |
| 11 |
9 10
|
syl |
|- ( ( ph /\ c e. ~P I ) -> ( # ` c ) e. NN0 ) |
| 12 |
11
|
nn0red |
|- ( ( ph /\ c e. ~P I ) -> ( # ` c ) e. RR ) |
| 13 |
|
hashcl |
|- ( I e. Fin -> ( # ` I ) e. NN0 ) |
| 14 |
2 13
|
syl |
|- ( ph -> ( # ` I ) e. NN0 ) |
| 15 |
14
|
nn0red |
|- ( ph -> ( # ` I ) e. RR ) |
| 16 |
15
|
adantr |
|- ( ( ph /\ c e. ~P I ) -> ( # ` I ) e. RR ) |
| 17 |
4
|
eldifad |
|- ( ph -> K e. NN0 ) |
| 18 |
17
|
nn0red |
|- ( ph -> K e. RR ) |
| 19 |
18
|
adantr |
|- ( ( ph /\ c e. ~P I ) -> K e. RR ) |
| 20 |
|
hashss |
|- ( ( I e. Fin /\ c C_ I ) -> ( # ` c ) <_ ( # ` I ) ) |
| 21 |
6 8 20
|
syl2anc |
|- ( ( ph /\ c e. ~P I ) -> ( # ` c ) <_ ( # ` I ) ) |
| 22 |
14
|
nn0zd |
|- ( ph -> ( # ` I ) e. ZZ ) |
| 23 |
|
nn0diffz0 |
|- ( ( # ` I ) e. NN0 -> ( NN0 \ ( 0 ... ( # ` I ) ) ) = ( ZZ>= ` ( ( # ` I ) + 1 ) ) ) |
| 24 |
14 23
|
syl |
|- ( ph -> ( NN0 \ ( 0 ... ( # ` I ) ) ) = ( ZZ>= ` ( ( # ` I ) + 1 ) ) ) |
| 25 |
4 24
|
eleqtrd |
|- ( ph -> K e. ( ZZ>= ` ( ( # ` I ) + 1 ) ) ) |
| 26 |
|
eluzp1l |
|- ( ( ( # ` I ) e. ZZ /\ K e. ( ZZ>= ` ( ( # ` I ) + 1 ) ) ) -> ( # ` I ) < K ) |
| 27 |
22 25 26
|
syl2anc |
|- ( ph -> ( # ` I ) < K ) |
| 28 |
27
|
adantr |
|- ( ( ph /\ c e. ~P I ) -> ( # ` I ) < K ) |
| 29 |
12 16 19 21 28
|
lelttrd |
|- ( ( ph /\ c e. ~P I ) -> ( # ` c ) < K ) |
| 30 |
12 29
|
ltned |
|- ( ( ph /\ c e. ~P I ) -> ( # ` c ) =/= K ) |
| 31 |
30
|
neneqd |
|- ( ( ph /\ c e. ~P I ) -> -. ( # ` c ) = K ) |
| 32 |
31
|
ralrimiva |
|- ( ph -> A. c e. ~P I -. ( # ` c ) = K ) |
| 33 |
|
rabeq0 |
|- ( { c e. ~P I | ( # ` c ) = K } = (/) <-> A. c e. ~P I -. ( # ` c ) = K ) |
| 34 |
32 33
|
sylibr |
|- ( ph -> { c e. ~P I | ( # ` c ) = K } = (/) ) |
| 35 |
34
|
imaeq2d |
|- ( ph -> ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) = ( ( _Ind ` I ) " (/) ) ) |
| 36 |
|
ima0 |
|- ( ( _Ind ` I ) " (/) ) = (/) |
| 37 |
35 36
|
eqtrdi |
|- ( ph -> ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) = (/) ) |
| 38 |
37
|
fveq2d |
|- ( ph -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) = ( ( _Ind ` D ) ` (/) ) ) |
| 39 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
| 40 |
1 39
|
rabex2 |
|- D e. _V |
| 41 |
|
indconst0 |
|- ( D e. _V -> ( ( _Ind ` D ) ` (/) ) = ( D X. { 0 } ) ) |
| 42 |
40 41
|
mp1i |
|- ( ph -> ( ( _Ind ` D ) ` (/) ) = ( D X. { 0 } ) ) |
| 43 |
38 42
|
eqtrd |
|- ( ph -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) = ( D X. { 0 } ) ) |
| 44 |
43
|
coeq2d |
|- ( ph -> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) = ( ( ZRHom ` R ) o. ( D X. { 0 } ) ) ) |
| 45 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
| 46 |
45
|
zrhrhm |
|- ( R e. Ring -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) |
| 47 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 48 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 49 |
47 48
|
rhmf |
|- ( ( ZRHom ` R ) e. ( ZZring RingHom R ) -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
| 50 |
3 46 49
|
3syl |
|- ( ph -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
| 51 |
50
|
ffnd |
|- ( ph -> ( ZRHom ` R ) Fn ZZ ) |
| 52 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 53 |
|
fcoconst |
|- ( ( ( ZRHom ` R ) Fn ZZ /\ 0 e. ZZ ) -> ( ( ZRHom ` R ) o. ( D X. { 0 } ) ) = ( D X. { ( ( ZRHom ` R ) ` 0 ) } ) ) |
| 54 |
51 52 53
|
syl2anc |
|- ( ph -> ( ( ZRHom ` R ) o. ( D X. { 0 } ) ) = ( D X. { ( ( ZRHom ` R ) ` 0 ) } ) ) |
| 55 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 56 |
45 55
|
zrh0 |
|- ( R e. Ring -> ( ( ZRHom ` R ) ` 0 ) = ( 0g ` R ) ) |
| 57 |
3 56
|
syl |
|- ( ph -> ( ( ZRHom ` R ) ` 0 ) = ( 0g ` R ) ) |
| 58 |
57
|
sneqd |
|- ( ph -> { ( ( ZRHom ` R ) ` 0 ) } = { ( 0g ` R ) } ) |
| 59 |
58
|
xpeq2d |
|- ( ph -> ( D X. { ( ( ZRHom ` R ) ` 0 ) } ) = ( D X. { ( 0g ` R ) } ) ) |
| 60 |
44 54 59
|
3eqtrd |
|- ( ph -> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) = ( D X. { ( 0g ` R ) } ) ) |
| 61 |
1 2 3 17
|
esplyfval |
|- ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) |
| 62 |
|
eqid |
|- ( I mPoly R ) = ( I mPoly R ) |
| 63 |
1
|
psrbasfsupp |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 64 |
3
|
ringgrpd |
|- ( ph -> R e. Grp ) |
| 65 |
62 63 55 5 2 64
|
mpl0 |
|- ( ph -> Z = ( D X. { ( 0g ` R ) } ) ) |
| 66 |
60 61 65
|
3eqtr4d |
|- ( ph -> ( ( I eSymPoly R ) ` K ) = Z ) |