| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0uz |
|- NN0 = ( ZZ>= ` 0 ) |
| 2 |
|
peano2nn0 |
|- ( N e. NN0 -> ( N + 1 ) e. NN0 ) |
| 3 |
2 1
|
eleqtrdi |
|- ( N e. NN0 -> ( N + 1 ) e. ( ZZ>= ` 0 ) ) |
| 4 |
|
fzouzsplit |
|- ( ( N + 1 ) e. ( ZZ>= ` 0 ) -> ( ZZ>= ` 0 ) = ( ( 0 ..^ ( N + 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 5 |
3 4
|
syl |
|- ( N e. NN0 -> ( ZZ>= ` 0 ) = ( ( 0 ..^ ( N + 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 6 |
1 5
|
eqtrid |
|- ( N e. NN0 -> NN0 = ( ( 0 ..^ ( N + 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 7 |
6
|
difeq1d |
|- ( N e. NN0 -> ( NN0 \ ( 0 ... N ) ) = ( ( ( 0 ..^ ( N + 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) \ ( 0 ... N ) ) ) |
| 8 |
|
uncom |
|- ( ( ZZ>= ` ( N + 1 ) ) u. ( 0 ... N ) ) = ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) |
| 9 |
|
nn0z |
|- ( N e. NN0 -> N e. ZZ ) |
| 10 |
|
fzval3 |
|- ( N e. ZZ -> ( 0 ... N ) = ( 0 ..^ ( N + 1 ) ) ) |
| 11 |
9 10
|
syl |
|- ( N e. NN0 -> ( 0 ... N ) = ( 0 ..^ ( N + 1 ) ) ) |
| 12 |
11
|
uneq1d |
|- ( N e. NN0 -> ( ( 0 ... N ) u. ( ZZ>= ` ( N + 1 ) ) ) = ( ( 0 ..^ ( N + 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 13 |
8 12
|
eqtrid |
|- ( N e. NN0 -> ( ( ZZ>= ` ( N + 1 ) ) u. ( 0 ... N ) ) = ( ( 0 ..^ ( N + 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) ) |
| 14 |
13
|
difeq1d |
|- ( N e. NN0 -> ( ( ( ZZ>= ` ( N + 1 ) ) u. ( 0 ... N ) ) \ ( 0 ... N ) ) = ( ( ( 0 ..^ ( N + 1 ) ) u. ( ZZ>= ` ( N + 1 ) ) ) \ ( 0 ... N ) ) ) |
| 15 |
11
|
ineq2d |
|- ( N e. NN0 -> ( ( ZZ>= ` ( N + 1 ) ) i^i ( 0 ... N ) ) = ( ( ZZ>= ` ( N + 1 ) ) i^i ( 0 ..^ ( N + 1 ) ) ) ) |
| 16 |
|
fzouzdisj |
|- ( ( 0 ..^ ( N + 1 ) ) i^i ( ZZ>= ` ( N + 1 ) ) ) = (/) |
| 17 |
16
|
ineqcomi |
|- ( ( ZZ>= ` ( N + 1 ) ) i^i ( 0 ..^ ( N + 1 ) ) ) = (/) |
| 18 |
15 17
|
eqtrdi |
|- ( N e. NN0 -> ( ( ZZ>= ` ( N + 1 ) ) i^i ( 0 ... N ) ) = (/) ) |
| 19 |
|
undif5 |
|- ( ( ( ZZ>= ` ( N + 1 ) ) i^i ( 0 ... N ) ) = (/) -> ( ( ( ZZ>= ` ( N + 1 ) ) u. ( 0 ... N ) ) \ ( 0 ... N ) ) = ( ZZ>= ` ( N + 1 ) ) ) |
| 20 |
18 19
|
syl |
|- ( N e. NN0 -> ( ( ( ZZ>= ` ( N + 1 ) ) u. ( 0 ... N ) ) \ ( 0 ... N ) ) = ( ZZ>= ` ( N + 1 ) ) ) |
| 21 |
7 14 20
|
3eqtr2d |
|- ( N e. NN0 -> ( NN0 \ ( 0 ... N ) ) = ( ZZ>= ` ( N + 1 ) ) ) |