| Step |
Hyp |
Ref |
Expression |
| 1 |
|
nn0uz |
⊢ ℕ0 = ( ℤ≥ ‘ 0 ) |
| 2 |
|
peano2nn0 |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 ) |
| 3 |
2 1
|
eleqtrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 0 ) ) |
| 4 |
|
fzouzsplit |
⊢ ( ( 𝑁 + 1 ) ∈ ( ℤ≥ ‘ 0 ) → ( ℤ≥ ‘ 0 ) = ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 5 |
3 4
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ℤ≥ ‘ 0 ) = ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 6 |
1 5
|
eqtrid |
⊢ ( 𝑁 ∈ ℕ0 → ℕ0 = ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 7 |
6
|
difeq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ℕ0 ∖ ( 0 ... 𝑁 ) ) = ( ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∖ ( 0 ... 𝑁 ) ) ) |
| 8 |
|
uncom |
⊢ ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∪ ( 0 ... 𝑁 ) ) = ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
| 9 |
|
nn0z |
⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) |
| 10 |
|
fzval3 |
⊢ ( 𝑁 ∈ ℤ → ( 0 ... 𝑁 ) = ( 0 ..^ ( 𝑁 + 1 ) ) ) |
| 11 |
9 10
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( 0 ... 𝑁 ) = ( 0 ..^ ( 𝑁 + 1 ) ) ) |
| 12 |
11
|
uneq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( 0 ... 𝑁 ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 13 |
8 12
|
eqtrid |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∪ ( 0 ... 𝑁 ) ) = ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ) |
| 14 |
13
|
difeq1d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∪ ( 0 ... 𝑁 ) ) ∖ ( 0 ... 𝑁 ) ) = ( ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) ∖ ( 0 ... 𝑁 ) ) ) |
| 15 |
11
|
ineq2d |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∩ ( 0 ... 𝑁 ) ) = ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∩ ( 0 ..^ ( 𝑁 + 1 ) ) ) ) |
| 16 |
|
fzouzdisj |
⊢ ( ( 0 ..^ ( 𝑁 + 1 ) ) ∩ ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) = ∅ |
| 17 |
16
|
ineqcomi |
⊢ ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∩ ( 0 ..^ ( 𝑁 + 1 ) ) ) = ∅ |
| 18 |
15 17
|
eqtrdi |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∩ ( 0 ... 𝑁 ) ) = ∅ ) |
| 19 |
|
undif5 |
⊢ ( ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∩ ( 0 ... 𝑁 ) ) = ∅ → ( ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∪ ( 0 ... 𝑁 ) ) ∖ ( 0 ... 𝑁 ) ) = ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
| 20 |
18 19
|
syl |
⊢ ( 𝑁 ∈ ℕ0 → ( ( ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ∪ ( 0 ... 𝑁 ) ) ∖ ( 0 ... 𝑁 ) ) = ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |
| 21 |
7 14 20
|
3eqtr2d |
⊢ ( 𝑁 ∈ ℕ0 → ( ℕ0 ∖ ( 0 ... 𝑁 ) ) = ( ℤ≥ ‘ ( 𝑁 + 1 ) ) ) |