Metamath Proof Explorer


Theorem nn0diffz0

Description: Upper set of the nonnegative integers. (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Assertion nn0diffz0 ( 𝑁 ∈ ℕ0 → ( ℕ0 ∖ ( 0 ... 𝑁 ) ) = ( ℤ ‘ ( 𝑁 + 1 ) ) )

Proof

Step Hyp Ref Expression
1 nn0uz 0 = ( ℤ ‘ 0 )
2 peano2nn0 ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ℕ0 )
3 2 1 eleqtrdi ( 𝑁 ∈ ℕ0 → ( 𝑁 + 1 ) ∈ ( ℤ ‘ 0 ) )
4 fzouzsplit ( ( 𝑁 + 1 ) ∈ ( ℤ ‘ 0 ) → ( ℤ ‘ 0 ) = ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) )
5 3 4 syl ( 𝑁 ∈ ℕ0 → ( ℤ ‘ 0 ) = ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) )
6 1 5 eqtrid ( 𝑁 ∈ ℕ0 → ℕ0 = ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) )
7 6 difeq1d ( 𝑁 ∈ ℕ0 → ( ℕ0 ∖ ( 0 ... 𝑁 ) ) = ( ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ∖ ( 0 ... 𝑁 ) ) )
8 uncom ( ( ℤ ‘ ( 𝑁 + 1 ) ) ∪ ( 0 ... 𝑁 ) ) = ( ( 0 ... 𝑁 ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) )
9 nn0z ( 𝑁 ∈ ℕ0𝑁 ∈ ℤ )
10 fzval3 ( 𝑁 ∈ ℤ → ( 0 ... 𝑁 ) = ( 0 ..^ ( 𝑁 + 1 ) ) )
11 9 10 syl ( 𝑁 ∈ ℕ0 → ( 0 ... 𝑁 ) = ( 0 ..^ ( 𝑁 + 1 ) ) )
12 11 uneq1d ( 𝑁 ∈ ℕ0 → ( ( 0 ... 𝑁 ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) = ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) )
13 8 12 eqtrid ( 𝑁 ∈ ℕ0 → ( ( ℤ ‘ ( 𝑁 + 1 ) ) ∪ ( 0 ... 𝑁 ) ) = ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) )
14 13 difeq1d ( 𝑁 ∈ ℕ0 → ( ( ( ℤ ‘ ( 𝑁 + 1 ) ) ∪ ( 0 ... 𝑁 ) ) ∖ ( 0 ... 𝑁 ) ) = ( ( ( 0 ..^ ( 𝑁 + 1 ) ) ∪ ( ℤ ‘ ( 𝑁 + 1 ) ) ) ∖ ( 0 ... 𝑁 ) ) )
15 11 ineq2d ( 𝑁 ∈ ℕ0 → ( ( ℤ ‘ ( 𝑁 + 1 ) ) ∩ ( 0 ... 𝑁 ) ) = ( ( ℤ ‘ ( 𝑁 + 1 ) ) ∩ ( 0 ..^ ( 𝑁 + 1 ) ) ) )
16 fzouzdisj ( ( 0 ..^ ( 𝑁 + 1 ) ) ∩ ( ℤ ‘ ( 𝑁 + 1 ) ) ) = ∅
17 16 ineqcomi ( ( ℤ ‘ ( 𝑁 + 1 ) ) ∩ ( 0 ..^ ( 𝑁 + 1 ) ) ) = ∅
18 15 17 eqtrdi ( 𝑁 ∈ ℕ0 → ( ( ℤ ‘ ( 𝑁 + 1 ) ) ∩ ( 0 ... 𝑁 ) ) = ∅ )
19 undif5 ( ( ( ℤ ‘ ( 𝑁 + 1 ) ) ∩ ( 0 ... 𝑁 ) ) = ∅ → ( ( ( ℤ ‘ ( 𝑁 + 1 ) ) ∪ ( 0 ... 𝑁 ) ) ∖ ( 0 ... 𝑁 ) ) = ( ℤ ‘ ( 𝑁 + 1 ) ) )
20 18 19 syl ( 𝑁 ∈ ℕ0 → ( ( ( ℤ ‘ ( 𝑁 + 1 ) ) ∪ ( 0 ... 𝑁 ) ) ∖ ( 0 ... 𝑁 ) ) = ( ℤ ‘ ( 𝑁 + 1 ) ) )
21 7 14 20 3eqtr2d ( 𝑁 ∈ ℕ0 → ( ℕ0 ∖ ( 0 ... 𝑁 ) ) = ( ℤ ‘ ( 𝑁 + 1 ) ) )