| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplympl.d |
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 } |
| 2 |
|
esplympl.i |
|- ( ph -> I e. Fin ) |
| 3 |
|
esplympl.r |
|- ( ph -> R e. Ring ) |
| 4 |
|
esplympl.k |
|- ( ph -> K e. NN0 ) |
| 5 |
|
nfv |
|- F/ d ph |
| 6 |
|
indf1o |
|- ( I e. Fin -> ( _Ind ` I ) : ~P I -1-1-onto-> ( { 0 , 1 } ^m I ) ) |
| 7 |
|
f1of |
|- ( ( _Ind ` I ) : ~P I -1-1-onto-> ( { 0 , 1 } ^m I ) -> ( _Ind ` I ) : ~P I --> ( { 0 , 1 } ^m I ) ) |
| 8 |
2 6 7
|
3syl |
|- ( ph -> ( _Ind ` I ) : ~P I --> ( { 0 , 1 } ^m I ) ) |
| 9 |
8
|
ffund |
|- ( ph -> Fun ( _Ind ` I ) ) |
| 10 |
|
breq1 |
|- ( h = ( ( _Ind ` I ) ` d ) -> ( h finSupp 0 <-> ( ( _Ind ` I ) ` d ) finSupp 0 ) ) |
| 11 |
|
nn0ex |
|- NN0 e. _V |
| 12 |
11
|
a1i |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> NN0 e. _V ) |
| 13 |
2
|
adantr |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> I e. Fin ) |
| 14 |
|
ssrab2 |
|- { c e. ~P I | ( # ` c ) = K } C_ ~P I |
| 15 |
14
|
a1i |
|- ( ph -> { c e. ~P I | ( # ` c ) = K } C_ ~P I ) |
| 16 |
15
|
sselda |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> d e. ~P I ) |
| 17 |
16
|
elpwid |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> d C_ I ) |
| 18 |
|
indf |
|- ( ( I e. Fin /\ d C_ I ) -> ( ( _Ind ` I ) ` d ) : I --> { 0 , 1 } ) |
| 19 |
13 17 18
|
syl2anc |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> ( ( _Ind ` I ) ` d ) : I --> { 0 , 1 } ) |
| 20 |
|
0nn0 |
|- 0 e. NN0 |
| 21 |
20
|
a1i |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> 0 e. NN0 ) |
| 22 |
|
1nn0 |
|- 1 e. NN0 |
| 23 |
22
|
a1i |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> 1 e. NN0 ) |
| 24 |
21 23
|
prssd |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> { 0 , 1 } C_ NN0 ) |
| 25 |
19 24
|
fssd |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> ( ( _Ind ` I ) ` d ) : I --> NN0 ) |
| 26 |
12 13 25
|
elmapdd |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> ( ( _Ind ` I ) ` d ) e. ( NN0 ^m I ) ) |
| 27 |
19 13 21
|
fidmfisupp |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> ( ( _Ind ` I ) ` d ) finSupp 0 ) |
| 28 |
10 26 27
|
elrabd |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> ( ( _Ind ` I ) ` d ) e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 29 |
28 1
|
eleqtrrdi |
|- ( ( ph /\ d e. { c e. ~P I | ( # ` c ) = K } ) -> ( ( _Ind ` I ) ` d ) e. D ) |
| 30 |
5 9 29
|
funimassd |
|- ( ph -> ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) C_ D ) |