| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplympl.d |
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 } |
| 2 |
|
esplympl.i |
|- ( ph -> I e. Fin ) |
| 3 |
|
esplympl.r |
|- ( ph -> R e. Ring ) |
| 4 |
|
esplympl.k |
|- ( ph -> K e. NN0 ) |
| 5 |
|
esplympl.1 |
|- M = ( Base ` ( I mPoly R ) ) |
| 6 |
|
fvexd |
|- ( ph -> ( Base ` R ) e. _V ) |
| 7 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
| 8 |
1 7
|
rabex2 |
|- D e. _V |
| 9 |
8
|
a1i |
|- ( ph -> D e. _V ) |
| 10 |
1 2 3 4
|
esplyfval |
|- ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) |
| 11 |
10
|
eqcomd |
|- ( ph -> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) = ( ( I eSymPoly R ) ` K ) ) |
| 12 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
| 13 |
12
|
zrhrhm |
|- ( R e. Ring -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) |
| 14 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 15 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 16 |
14 15
|
rhmf |
|- ( ( ZRHom ` R ) e. ( ZZring RingHom R ) -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
| 17 |
3 13 16
|
3syl |
|- ( ph -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
| 18 |
1 2 3 4
|
esplylem |
|- ( ph -> ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) C_ D ) |
| 19 |
|
indf |
|- ( ( D e. _V /\ ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) C_ D ) -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) : D --> { 0 , 1 } ) |
| 20 |
9 18 19
|
syl2anc |
|- ( ph -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) : D --> { 0 , 1 } ) |
| 21 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 22 |
|
1zzd |
|- ( ph -> 1 e. ZZ ) |
| 23 |
21 22
|
prssd |
|- ( ph -> { 0 , 1 } C_ ZZ ) |
| 24 |
20 23
|
fssd |
|- ( ph -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) : D --> ZZ ) |
| 25 |
17 24
|
fcod |
|- ( ph -> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) : D --> ( Base ` R ) ) |
| 26 |
11 25
|
feq1dd |
|- ( ph -> ( ( I eSymPoly R ) ` K ) : D --> ( Base ` R ) ) |
| 27 |
6 9 26
|
elmapdd |
|- ( ph -> ( ( I eSymPoly R ) ` K ) e. ( ( Base ` R ) ^m D ) ) |
| 28 |
|
eqid |
|- ( I mPwSer R ) = ( I mPwSer R ) |
| 29 |
1
|
psrbasfsupp |
|- D = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 30 |
|
eqid |
|- ( Base ` ( I mPwSer R ) ) = ( Base ` ( I mPwSer R ) ) |
| 31 |
28 15 29 30 2
|
psrbas |
|- ( ph -> ( Base ` ( I mPwSer R ) ) = ( ( Base ` R ) ^m D ) ) |
| 32 |
27 31
|
eleqtrrd |
|- ( ph -> ( ( I eSymPoly R ) ` K ) e. ( Base ` ( I mPwSer R ) ) ) |
| 33 |
|
fvexd |
|- ( ph -> ( 0g ` R ) e. _V ) |
| 34 |
|
zex |
|- ZZ e. _V |
| 35 |
34
|
a1i |
|- ( ph -> ZZ e. _V ) |
| 36 |
|
indf1o |
|- ( I e. Fin -> ( _Ind ` I ) : ~P I -1-1-onto-> ( { 0 , 1 } ^m I ) ) |
| 37 |
|
f1of |
|- ( ( _Ind ` I ) : ~P I -1-1-onto-> ( { 0 , 1 } ^m I ) -> ( _Ind ` I ) : ~P I --> ( { 0 , 1 } ^m I ) ) |
| 38 |
2 36 37
|
3syl |
|- ( ph -> ( _Ind ` I ) : ~P I --> ( { 0 , 1 } ^m I ) ) |
| 39 |
38
|
ffund |
|- ( ph -> Fun ( _Ind ` I ) ) |
| 40 |
2
|
pwexd |
|- ( ph -> ~P I e. _V ) |
| 41 |
|
ssrab2 |
|- { c e. ~P I | ( # ` c ) = K } C_ ~P I |
| 42 |
41
|
a1i |
|- ( ph -> { c e. ~P I | ( # ` c ) = K } C_ ~P I ) |
| 43 |
40 42
|
ssexd |
|- ( ph -> { c e. ~P I | ( # ` c ) = K } e. _V ) |
| 44 |
|
hashcl |
|- ( I e. Fin -> ( # ` I ) e. NN0 ) |
| 45 |
2 44
|
syl |
|- ( ph -> ( # ` I ) e. NN0 ) |
| 46 |
4
|
nn0zd |
|- ( ph -> K e. ZZ ) |
| 47 |
|
bccl |
|- ( ( ( # ` I ) e. NN0 /\ K e. ZZ ) -> ( ( # ` I ) _C K ) e. NN0 ) |
| 48 |
45 46 47
|
syl2anc |
|- ( ph -> ( ( # ` I ) _C K ) e. NN0 ) |
| 49 |
|
hashbc |
|- ( ( I e. Fin /\ K e. ZZ ) -> ( ( # ` I ) _C K ) = ( # ` { c e. ~P I | ( # ` c ) = K } ) ) |
| 50 |
2 46 49
|
syl2anc |
|- ( ph -> ( ( # ` I ) _C K ) = ( # ` { c e. ~P I | ( # ` c ) = K } ) ) |
| 51 |
50
|
eqcomd |
|- ( ph -> ( # ` { c e. ~P I | ( # ` c ) = K } ) = ( ( # ` I ) _C K ) ) |
| 52 |
|
hashvnfin |
|- ( ( { c e. ~P I | ( # ` c ) = K } e. _V /\ ( ( # ` I ) _C K ) e. NN0 ) -> ( ( # ` { c e. ~P I | ( # ` c ) = K } ) = ( ( # ` I ) _C K ) -> { c e. ~P I | ( # ` c ) = K } e. Fin ) ) |
| 53 |
52
|
imp |
|- ( ( ( { c e. ~P I | ( # ` c ) = K } e. _V /\ ( ( # ` I ) _C K ) e. NN0 ) /\ ( # ` { c e. ~P I | ( # ` c ) = K } ) = ( ( # ` I ) _C K ) ) -> { c e. ~P I | ( # ` c ) = K } e. Fin ) |
| 54 |
43 48 51 53
|
syl21anc |
|- ( ph -> { c e. ~P I | ( # ` c ) = K } e. Fin ) |
| 55 |
|
imafi |
|- ( ( Fun ( _Ind ` I ) /\ { c e. ~P I | ( # ` c ) = K } e. Fin ) -> ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) e. Fin ) |
| 56 |
39 54 55
|
syl2anc |
|- ( ph -> ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) e. Fin ) |
| 57 |
9 18 56
|
indfsd |
|- ( ph -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) finSupp 0 ) |
| 58 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 59 |
12 58
|
zrh0 |
|- ( R e. Ring -> ( ( ZRHom ` R ) ` 0 ) = ( 0g ` R ) ) |
| 60 |
3 59
|
syl |
|- ( ph -> ( ( ZRHom ` R ) ` 0 ) = ( 0g ` R ) ) |
| 61 |
33 21 20 17 23 9 35 57 60
|
fsuppcor |
|- ( ph -> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) finSupp ( 0g ` R ) ) |
| 62 |
10 61
|
eqbrtrd |
|- ( ph -> ( ( I eSymPoly R ) ` K ) finSupp ( 0g ` R ) ) |
| 63 |
|
eqid |
|- ( I mPoly R ) = ( I mPoly R ) |
| 64 |
63 28 30 58 5
|
mplelbas |
|- ( ( ( I eSymPoly R ) ` K ) e. M <-> ( ( ( I eSymPoly R ) ` K ) e. ( Base ` ( I mPwSer R ) ) /\ ( ( I eSymPoly R ) ` K ) finSupp ( 0g ` R ) ) ) |
| 65 |
32 62 64
|
sylanbrc |
|- ( ph -> ( ( I eSymPoly R ) ` K ) e. M ) |