Metamath Proof Explorer


Theorem indfsd

Description: The indicator function of a finite set has finite support. (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses indfsd.1
|- ( ph -> O e. V )
indfsd.2
|- ( ph -> A C_ O )
indfsd.3
|- ( ph -> A e. Fin )
Assertion indfsd
|- ( ph -> ( ( _Ind ` O ) ` A ) finSupp 0 )

Proof

Step Hyp Ref Expression
1 indfsd.1
 |-  ( ph -> O e. V )
2 indfsd.2
 |-  ( ph -> A C_ O )
3 indfsd.3
 |-  ( ph -> A e. Fin )
4 fvexd
 |-  ( ph -> ( ( _Ind ` O ) ` A ) e. _V )
5 c0ex
 |-  0 e. _V
6 5 a1i
 |-  ( ph -> 0 e. _V )
7 indf
 |-  ( ( O e. V /\ A C_ O ) -> ( ( _Ind ` O ) ` A ) : O --> { 0 , 1 } )
8 1 2 7 syl2anc
 |-  ( ph -> ( ( _Ind ` O ) ` A ) : O --> { 0 , 1 } )
9 8 ffund
 |-  ( ph -> Fun ( ( _Ind ` O ) ` A ) )
10 indsupp
 |-  ( ( O e. V /\ A C_ O ) -> ( ( ( _Ind ` O ) ` A ) supp 0 ) = A )
11 1 2 10 syl2anc
 |-  ( ph -> ( ( ( _Ind ` O ) ` A ) supp 0 ) = A )
12 11 3 eqeltrd
 |-  ( ph -> ( ( ( _Ind ` O ) ` A ) supp 0 ) e. Fin )
13 4 6 9 12 isfsuppd
 |-  ( ph -> ( ( _Ind ` O ) ` A ) finSupp 0 )