| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indfsd.1 |
|- ( ph -> O e. V ) |
| 2 |
|
indfsd.2 |
|- ( ph -> A C_ O ) |
| 3 |
|
indfsd.3 |
|- ( ph -> A e. Fin ) |
| 4 |
|
fvexd |
|- ( ph -> ( ( _Ind ` O ) ` A ) e. _V ) |
| 5 |
|
c0ex |
|- 0 e. _V |
| 6 |
5
|
a1i |
|- ( ph -> 0 e. _V ) |
| 7 |
|
indf |
|- ( ( O e. V /\ A C_ O ) -> ( ( _Ind ` O ) ` A ) : O --> { 0 , 1 } ) |
| 8 |
1 2 7
|
syl2anc |
|- ( ph -> ( ( _Ind ` O ) ` A ) : O --> { 0 , 1 } ) |
| 9 |
8
|
ffund |
|- ( ph -> Fun ( ( _Ind ` O ) ` A ) ) |
| 10 |
|
indsupp |
|- ( ( O e. V /\ A C_ O ) -> ( ( ( _Ind ` O ) ` A ) supp 0 ) = A ) |
| 11 |
1 2 10
|
syl2anc |
|- ( ph -> ( ( ( _Ind ` O ) ` A ) supp 0 ) = A ) |
| 12 |
11 3
|
eqeltrd |
|- ( ph -> ( ( ( _Ind ` O ) ` A ) supp 0 ) e. Fin ) |
| 13 |
4 6 9 12
|
isfsuppd |
|- ( ph -> ( ( _Ind ` O ) ` A ) finSupp 0 ) |