| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indfsd.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
| 2 |
|
indfsd.2 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝑂 ) |
| 3 |
|
indfsd.3 |
⊢ ( 𝜑 → 𝐴 ∈ Fin ) |
| 4 |
|
fvexd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ∈ V ) |
| 5 |
|
c0ex |
⊢ 0 ∈ V |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 7 |
|
indf |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) : 𝑂 ⟶ { 0 , 1 } ) |
| 8 |
1 2 7
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) : 𝑂 ⟶ { 0 , 1 } ) |
| 9 |
8
|
ffund |
⊢ ( 𝜑 → Fun ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) ) |
| 10 |
|
indsupp |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐴 ⊆ 𝑂 ) → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) supp 0 ) = 𝐴 ) |
| 11 |
1 2 10
|
syl2anc |
⊢ ( 𝜑 → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) supp 0 ) = 𝐴 ) |
| 12 |
11 3
|
eqeltrd |
⊢ ( 𝜑 → ( ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) supp 0 ) ∈ Fin ) |
| 13 |
4 6 9 12
|
isfsuppd |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝐴 ) finSupp 0 ) |