Metamath Proof Explorer


Theorem indfsd

Description: The indicator function of a finite set has finite support. (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses indfsd.1 φ O V
indfsd.2 φ A O
indfsd.3 φ A Fin
Assertion indfsd φ finSupp 0 𝟙 O A

Proof

Step Hyp Ref Expression
1 indfsd.1 φ O V
2 indfsd.2 φ A O
3 indfsd.3 φ A Fin
4 fvexd φ 𝟙 O A V
5 c0ex 0 V
6 5 a1i φ 0 V
7 indf O V A O 𝟙 O A : O 0 1
8 1 2 7 syl2anc φ 𝟙 O A : O 0 1
9 8 ffund φ Fun 𝟙 O A
10 indsupp O V A O 𝟙 O A supp 0 = A
11 1 2 10 syl2anc φ 𝟙 O A supp 0 = A
12 11 3 eqeltrd φ 𝟙 O A supp 0 Fin
13 4 6 9 12 isfsuppd φ finSupp 0 𝟙 O A