Metamath Proof Explorer


Theorem indfsid

Description: Conditions for a function to be an indicator function. (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses indfsid.1 φ O V
indfsid.2 φ F : O 0 1
Assertion indfsid φ F = 𝟙 O F supp 0

Proof

Step Hyp Ref Expression
1 indfsid.1 φ O V
2 indfsid.2 φ F : O 0 1
3 indpreima O V F : O 0 1 F = 𝟙 O F -1 1
4 1 2 3 syl2anc φ F = 𝟙 O F -1 1
5 c0ex 0 V
6 5 a1i φ 0 V
7 fsuppeq O V 0 V F : O 0 1 F supp 0 = F -1 0 1 0
8 7 imp O V 0 V F : O 0 1 F supp 0 = F -1 0 1 0
9 1 6 2 8 syl21anc φ F supp 0 = F -1 0 1 0
10 0ne1 0 1
11 difprsn1 0 1 0 1 0 = 1
12 10 11 mp1i φ 0 1 0 = 1
13 12 imaeq2d φ F -1 0 1 0 = F -1 1
14 9 13 eqtrd φ F supp 0 = F -1 1
15 14 fveq2d φ 𝟙 O F supp 0 = 𝟙 O F -1 1
16 4 15 eqtr4d φ F = 𝟙 O F supp 0