| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indfsid.1 |
|- ( ph -> O e. V ) |
| 2 |
|
indfsid.2 |
|- ( ph -> F : O --> { 0 , 1 } ) |
| 3 |
|
indpreima |
|- ( ( O e. V /\ F : O --> { 0 , 1 } ) -> F = ( ( _Ind ` O ) ` ( `' F " { 1 } ) ) ) |
| 4 |
1 2 3
|
syl2anc |
|- ( ph -> F = ( ( _Ind ` O ) ` ( `' F " { 1 } ) ) ) |
| 5 |
|
c0ex |
|- 0 e. _V |
| 6 |
5
|
a1i |
|- ( ph -> 0 e. _V ) |
| 7 |
|
fsuppeq |
|- ( ( O e. V /\ 0 e. _V ) -> ( F : O --> { 0 , 1 } -> ( F supp 0 ) = ( `' F " ( { 0 , 1 } \ { 0 } ) ) ) ) |
| 8 |
7
|
imp |
|- ( ( ( O e. V /\ 0 e. _V ) /\ F : O --> { 0 , 1 } ) -> ( F supp 0 ) = ( `' F " ( { 0 , 1 } \ { 0 } ) ) ) |
| 9 |
1 6 2 8
|
syl21anc |
|- ( ph -> ( F supp 0 ) = ( `' F " ( { 0 , 1 } \ { 0 } ) ) ) |
| 10 |
|
0ne1 |
|- 0 =/= 1 |
| 11 |
|
difprsn1 |
|- ( 0 =/= 1 -> ( { 0 , 1 } \ { 0 } ) = { 1 } ) |
| 12 |
10 11
|
mp1i |
|- ( ph -> ( { 0 , 1 } \ { 0 } ) = { 1 } ) |
| 13 |
12
|
imaeq2d |
|- ( ph -> ( `' F " ( { 0 , 1 } \ { 0 } ) ) = ( `' F " { 1 } ) ) |
| 14 |
9 13
|
eqtrd |
|- ( ph -> ( F supp 0 ) = ( `' F " { 1 } ) ) |
| 15 |
14
|
fveq2d |
|- ( ph -> ( ( _Ind ` O ) ` ( F supp 0 ) ) = ( ( _Ind ` O ) ` ( `' F " { 1 } ) ) ) |
| 16 |
4 15
|
eqtr4d |
|- ( ph -> F = ( ( _Ind ` O ) ` ( F supp 0 ) ) ) |