| Step |
Hyp |
Ref |
Expression |
| 1 |
|
indfsid.1 |
⊢ ( 𝜑 → 𝑂 ∈ 𝑉 ) |
| 2 |
|
indfsid.2 |
⊢ ( 𝜑 → 𝐹 : 𝑂 ⟶ { 0 , 1 } ) |
| 3 |
|
indpreima |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) → 𝐹 = ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝐹 “ { 1 } ) ) ) |
| 4 |
1 2 3
|
syl2anc |
⊢ ( 𝜑 → 𝐹 = ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝐹 “ { 1 } ) ) ) |
| 5 |
|
c0ex |
⊢ 0 ∈ V |
| 6 |
5
|
a1i |
⊢ ( 𝜑 → 0 ∈ V ) |
| 7 |
|
fsuppeq |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 0 ∈ V ) → ( 𝐹 : 𝑂 ⟶ { 0 , 1 } → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( { 0 , 1 } ∖ { 0 } ) ) ) ) |
| 8 |
7
|
imp |
⊢ ( ( ( 𝑂 ∈ 𝑉 ∧ 0 ∈ V ) ∧ 𝐹 : 𝑂 ⟶ { 0 , 1 } ) → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( { 0 , 1 } ∖ { 0 } ) ) ) |
| 9 |
1 6 2 8
|
syl21anc |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ ( { 0 , 1 } ∖ { 0 } ) ) ) |
| 10 |
|
0ne1 |
⊢ 0 ≠ 1 |
| 11 |
|
difprsn1 |
⊢ ( 0 ≠ 1 → ( { 0 , 1 } ∖ { 0 } ) = { 1 } ) |
| 12 |
10 11
|
mp1i |
⊢ ( 𝜑 → ( { 0 , 1 } ∖ { 0 } ) = { 1 } ) |
| 13 |
12
|
imaeq2d |
⊢ ( 𝜑 → ( ◡ 𝐹 “ ( { 0 , 1 } ∖ { 0 } ) ) = ( ◡ 𝐹 “ { 1 } ) ) |
| 14 |
9 13
|
eqtrd |
⊢ ( 𝜑 → ( 𝐹 supp 0 ) = ( ◡ 𝐹 “ { 1 } ) ) |
| 15 |
14
|
fveq2d |
⊢ ( 𝜑 → ( ( 𝟭 ‘ 𝑂 ) ‘ ( 𝐹 supp 0 ) ) = ( ( 𝟭 ‘ 𝑂 ) ‘ ( ◡ 𝐹 “ { 1 } ) ) ) |
| 16 |
4 15
|
eqtr4d |
⊢ ( 𝜑 → 𝐹 = ( ( 𝟭 ‘ 𝑂 ) ‘ ( 𝐹 supp 0 ) ) ) |