Metamath Proof Explorer


Theorem esplyfval

Description: The K -th elementary polynomial for a given index I of variables and base ring R . (Contributed by Thierry Arnoux, 18-Jan-2026)

Ref Expression
Hypotheses esplyval.d
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 }
esplyval.i
|- ( ph -> I e. V )
esplyval.r
|- ( ph -> R e. W )
esplyfval.k
|- ( ph -> K e. NN0 )
Assertion esplyfval
|- ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) )

Proof

Step Hyp Ref Expression
1 esplyval.d
 |-  D = { h e. ( NN0 ^m I ) | h finSupp 0 }
2 esplyval.i
 |-  ( ph -> I e. V )
3 esplyval.r
 |-  ( ph -> R e. W )
4 esplyfval.k
 |-  ( ph -> K e. NN0 )
5 eqeq2
 |-  ( k = K -> ( ( # ` c ) = k <-> ( # ` c ) = K ) )
6 5 rabbidv
 |-  ( k = K -> { c e. ~P I | ( # ` c ) = k } = { c e. ~P I | ( # ` c ) = K } )
7 6 imaeq2d
 |-  ( k = K -> ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) = ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) )
8 7 fveq2d
 |-  ( k = K -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) = ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) )
9 8 coeq2d
 |-  ( k = K -> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) )
10 1 2 3 esplyval
 |-  ( ph -> ( I eSymPoly R ) = ( k e. NN0 |-> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) ) )
11 fvexd
 |-  ( ph -> ( ZRHom ` R ) e. _V )
12 fvexd
 |-  ( ph -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) e. _V )
13 11 12 coexd
 |-  ( ph -> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) e. _V )
14 9 10 4 13 fvmptd4
 |-  ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) )