| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyval.d |
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 } |
| 2 |
|
esplyval.i |
|- ( ph -> I e. V ) |
| 3 |
|
esplyval.r |
|- ( ph -> R e. W ) |
| 4 |
|
esplyfval.k |
|- ( ph -> K e. NN0 ) |
| 5 |
|
eqeq2 |
|- ( k = K -> ( ( # ` c ) = k <-> ( # ` c ) = K ) ) |
| 6 |
5
|
rabbidv |
|- ( k = K -> { c e. ~P I | ( # ` c ) = k } = { c e. ~P I | ( # ` c ) = K } ) |
| 7 |
6
|
imaeq2d |
|- ( k = K -> ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) = ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) |
| 8 |
7
|
fveq2d |
|- ( k = K -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) = ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) |
| 9 |
8
|
coeq2d |
|- ( k = K -> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) |
| 10 |
1 2 3
|
esplyval |
|- ( ph -> ( I eSymPoly R ) = ( k e. NN0 |-> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) ) ) |
| 11 |
|
fvexd |
|- ( ph -> ( ZRHom ` R ) e. _V ) |
| 12 |
|
fvexd |
|- ( ph -> ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) e. _V ) |
| 13 |
11 12
|
coexd |
|- ( ph -> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) e. _V ) |
| 14 |
9 10 4 13
|
fvmptd4 |
|- ( ph -> ( ( I eSymPoly R ) ` K ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = K } ) ) ) ) |