| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyval.d |
|- D = { h e. ( NN0 ^m I ) | h finSupp 0 } |
| 2 |
|
esplyval.i |
|- ( ph -> I e. V ) |
| 3 |
|
esplyval.r |
|- ( ph -> R e. W ) |
| 4 |
|
df-esply |
|- eSymPoly = ( i e. _V , r e. _V |-> ( k e. NN0 |-> ( ( ZRHom ` r ) o. ( ( _Ind ` { h e. ( NN0 ^m i ) | h finSupp 0 } ) ` ( ( _Ind ` i ) " { c e. ~P i | ( # ` c ) = k } ) ) ) ) ) |
| 5 |
4
|
a1i |
|- ( ph -> eSymPoly = ( i e. _V , r e. _V |-> ( k e. NN0 |-> ( ( ZRHom ` r ) o. ( ( _Ind ` { h e. ( NN0 ^m i ) | h finSupp 0 } ) ` ( ( _Ind ` i ) " { c e. ~P i | ( # ` c ) = k } ) ) ) ) ) ) |
| 6 |
|
fveq2 |
|- ( r = R -> ( ZRHom ` r ) = ( ZRHom ` R ) ) |
| 7 |
6
|
adantl |
|- ( ( i = I /\ r = R ) -> ( ZRHom ` r ) = ( ZRHom ` R ) ) |
| 8 |
|
oveq2 |
|- ( i = I -> ( NN0 ^m i ) = ( NN0 ^m I ) ) |
| 9 |
8
|
rabeqdv |
|- ( i = I -> { h e. ( NN0 ^m i ) | h finSupp 0 } = { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 10 |
9 1
|
eqtr4di |
|- ( i = I -> { h e. ( NN0 ^m i ) | h finSupp 0 } = D ) |
| 11 |
10
|
fveq2d |
|- ( i = I -> ( _Ind ` { h e. ( NN0 ^m i ) | h finSupp 0 } ) = ( _Ind ` D ) ) |
| 12 |
11
|
adantr |
|- ( ( i = I /\ r = R ) -> ( _Ind ` { h e. ( NN0 ^m i ) | h finSupp 0 } ) = ( _Ind ` D ) ) |
| 13 |
|
fveq2 |
|- ( i = I -> ( _Ind ` i ) = ( _Ind ` I ) ) |
| 14 |
13
|
adantr |
|- ( ( i = I /\ r = R ) -> ( _Ind ` i ) = ( _Ind ` I ) ) |
| 15 |
|
pweq |
|- ( i = I -> ~P i = ~P I ) |
| 16 |
15
|
rabeqdv |
|- ( i = I -> { c e. ~P i | ( # ` c ) = k } = { c e. ~P I | ( # ` c ) = k } ) |
| 17 |
16
|
adantr |
|- ( ( i = I /\ r = R ) -> { c e. ~P i | ( # ` c ) = k } = { c e. ~P I | ( # ` c ) = k } ) |
| 18 |
14 17
|
imaeq12d |
|- ( ( i = I /\ r = R ) -> ( ( _Ind ` i ) " { c e. ~P i | ( # ` c ) = k } ) = ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) |
| 19 |
12 18
|
fveq12d |
|- ( ( i = I /\ r = R ) -> ( ( _Ind ` { h e. ( NN0 ^m i ) | h finSupp 0 } ) ` ( ( _Ind ` i ) " { c e. ~P i | ( # ` c ) = k } ) ) = ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) |
| 20 |
7 19
|
coeq12d |
|- ( ( i = I /\ r = R ) -> ( ( ZRHom ` r ) o. ( ( _Ind ` { h e. ( NN0 ^m i ) | h finSupp 0 } ) ` ( ( _Ind ` i ) " { c e. ~P i | ( # ` c ) = k } ) ) ) = ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) ) |
| 21 |
20
|
mpteq2dv |
|- ( ( i = I /\ r = R ) -> ( k e. NN0 |-> ( ( ZRHom ` r ) o. ( ( _Ind ` { h e. ( NN0 ^m i ) | h finSupp 0 } ) ` ( ( _Ind ` i ) " { c e. ~P i | ( # ` c ) = k } ) ) ) ) = ( k e. NN0 |-> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) ) ) |
| 22 |
21
|
adantl |
|- ( ( ph /\ ( i = I /\ r = R ) ) -> ( k e. NN0 |-> ( ( ZRHom ` r ) o. ( ( _Ind ` { h e. ( NN0 ^m i ) | h finSupp 0 } ) ` ( ( _Ind ` i ) " { c e. ~P i | ( # ` c ) = k } ) ) ) ) = ( k e. NN0 |-> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) ) ) |
| 23 |
2
|
elexd |
|- ( ph -> I e. _V ) |
| 24 |
3
|
elexd |
|- ( ph -> R e. _V ) |
| 25 |
|
nn0ex |
|- NN0 e. _V |
| 26 |
25
|
mptex |
|- ( k e. NN0 |-> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) ) e. _V |
| 27 |
26
|
a1i |
|- ( ph -> ( k e. NN0 |-> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) ) e. _V ) |
| 28 |
5 22 23 24 27
|
ovmpod |
|- ( ph -> ( I eSymPoly R ) = ( k e. NN0 |-> ( ( ZRHom ` R ) o. ( ( _Ind ` D ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) ) ) |