| Step |
Hyp |
Ref |
Expression |
| 1 |
|
esplyfval0.i |
|- ( ph -> I e. V ) |
| 2 |
|
esplyfval0.r |
|- ( ph -> R e. Ring ) |
| 3 |
|
esplyfval0.0 |
|- U = ( 1r ` ( I mPoly R ) ) |
| 4 |
|
eqid |
|- { h e. ( NN0 ^m I ) | h finSupp 0 } = { h e. ( NN0 ^m I ) | h finSupp 0 } |
| 5 |
4 1 2
|
esplyval |
|- ( ph -> ( I eSymPoly R ) = ( k e. NN0 |-> ( ( ZRHom ` R ) o. ( ( _Ind ` { h e. ( NN0 ^m I ) | h finSupp 0 } ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) ) ) |
| 6 |
|
eqeq2 |
|- ( k = 0 -> ( ( # ` c ) = k <-> ( # ` c ) = 0 ) ) |
| 7 |
6
|
rabbidv |
|- ( k = 0 -> { c e. ~P I | ( # ` c ) = k } = { c e. ~P I | ( # ` c ) = 0 } ) |
| 8 |
7
|
imaeq2d |
|- ( k = 0 -> ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) = ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = 0 } ) ) |
| 9 |
8
|
fveq2d |
|- ( k = 0 -> ( ( _Ind ` { h e. ( NN0 ^m I ) | h finSupp 0 } ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) = ( ( _Ind ` { h e. ( NN0 ^m I ) | h finSupp 0 } ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = 0 } ) ) ) |
| 10 |
9
|
coeq2d |
|- ( k = 0 -> ( ( ZRHom ` R ) o. ( ( _Ind ` { h e. ( NN0 ^m I ) | h finSupp 0 } ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) = ( ( ZRHom ` R ) o. ( ( _Ind ` { h e. ( NN0 ^m I ) | h finSupp 0 } ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = 0 } ) ) ) ) |
| 11 |
|
fvif |
|- ( ( ZRHom ` R ) ` if ( f = ( I X. { 0 } ) , 1 , 0 ) ) = if ( f = ( I X. { 0 } ) , ( ( ZRHom ` R ) ` 1 ) , ( ( ZRHom ` R ) ` 0 ) ) |
| 12 |
|
eqid |
|- ( ZRHom ` R ) = ( ZRHom ` R ) |
| 13 |
|
eqid |
|- ( 1r ` R ) = ( 1r ` R ) |
| 14 |
12 13
|
zrh1 |
|- ( R e. Ring -> ( ( ZRHom ` R ) ` 1 ) = ( 1r ` R ) ) |
| 15 |
2 14
|
syl |
|- ( ph -> ( ( ZRHom ` R ) ` 1 ) = ( 1r ` R ) ) |
| 16 |
|
eqid |
|- ( 0g ` R ) = ( 0g ` R ) |
| 17 |
12 16
|
zrh0 |
|- ( R e. Ring -> ( ( ZRHom ` R ) ` 0 ) = ( 0g ` R ) ) |
| 18 |
2 17
|
syl |
|- ( ph -> ( ( ZRHom ` R ) ` 0 ) = ( 0g ` R ) ) |
| 19 |
15 18
|
ifeq12d |
|- ( ph -> if ( f = ( I X. { 0 } ) , ( ( ZRHom ` R ) ` 1 ) , ( ( ZRHom ` R ) ` 0 ) ) = if ( f = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) |
| 20 |
19
|
adantr |
|- ( ( ph /\ f e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> if ( f = ( I X. { 0 } ) , ( ( ZRHom ` R ) ` 1 ) , ( ( ZRHom ` R ) ` 0 ) ) = if ( f = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) |
| 21 |
11 20
|
eqtrid |
|- ( ( ph /\ f e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> ( ( ZRHom ` R ) ` if ( f = ( I X. { 0 } ) , 1 , 0 ) ) = if ( f = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) |
| 22 |
21
|
mpteq2dva |
|- ( ph -> ( f e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( ( ZRHom ` R ) ` if ( f = ( I X. { 0 } ) , 1 , 0 ) ) ) = ( f e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> if ( f = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
| 23 |
|
1zzd |
|- ( ( ph /\ f e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> 1 e. ZZ ) |
| 24 |
|
0zd |
|- ( ( ph /\ f e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> 0 e. ZZ ) |
| 25 |
23 24
|
ifcld |
|- ( ( ph /\ f e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> if ( f = ( I X. { 0 } ) , 1 , 0 ) e. ZZ ) |
| 26 |
|
fveqeq2 |
|- ( c = (/) -> ( ( # ` c ) = 0 <-> ( # ` (/) ) = 0 ) ) |
| 27 |
|
0elpw |
|- (/) e. ~P I |
| 28 |
27
|
a1i |
|- ( ph -> (/) e. ~P I ) |
| 29 |
|
hash0 |
|- ( # ` (/) ) = 0 |
| 30 |
29
|
a1i |
|- ( ph -> ( # ` (/) ) = 0 ) |
| 31 |
|
hasheq0 |
|- ( c e. ~P I -> ( ( # ` c ) = 0 <-> c = (/) ) ) |
| 32 |
31
|
biimpa |
|- ( ( c e. ~P I /\ ( # ` c ) = 0 ) -> c = (/) ) |
| 33 |
32
|
adantll |
|- ( ( ( ph /\ c e. ~P I ) /\ ( # ` c ) = 0 ) -> c = (/) ) |
| 34 |
26 28 30 33
|
rabeqsnd |
|- ( ph -> { c e. ~P I | ( # ` c ) = 0 } = { (/) } ) |
| 35 |
34
|
imaeq2d |
|- ( ph -> ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = 0 } ) = ( ( _Ind ` I ) " { (/) } ) ) |
| 36 |
|
indf1o |
|- ( I e. V -> ( _Ind ` I ) : ~P I -1-1-onto-> ( { 0 , 1 } ^m I ) ) |
| 37 |
|
f1of |
|- ( ( _Ind ` I ) : ~P I -1-1-onto-> ( { 0 , 1 } ^m I ) -> ( _Ind ` I ) : ~P I --> ( { 0 , 1 } ^m I ) ) |
| 38 |
1 36 37
|
3syl |
|- ( ph -> ( _Ind ` I ) : ~P I --> ( { 0 , 1 } ^m I ) ) |
| 39 |
38
|
ffnd |
|- ( ph -> ( _Ind ` I ) Fn ~P I ) |
| 40 |
39 28
|
fnimasnd |
|- ( ph -> ( ( _Ind ` I ) " { (/) } ) = { ( ( _Ind ` I ) ` (/) ) } ) |
| 41 |
|
indconst0 |
|- ( I e. V -> ( ( _Ind ` I ) ` (/) ) = ( I X. { 0 } ) ) |
| 42 |
1 41
|
syl |
|- ( ph -> ( ( _Ind ` I ) ` (/) ) = ( I X. { 0 } ) ) |
| 43 |
42
|
sneqd |
|- ( ph -> { ( ( _Ind ` I ) ` (/) ) } = { ( I X. { 0 } ) } ) |
| 44 |
35 40 43
|
3eqtrd |
|- ( ph -> ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = 0 } ) = { ( I X. { 0 } ) } ) |
| 45 |
44
|
fveq2d |
|- ( ph -> ( ( _Ind ` { h e. ( NN0 ^m I ) | h finSupp 0 } ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = 0 } ) ) = ( ( _Ind ` { h e. ( NN0 ^m I ) | h finSupp 0 } ) ` { ( I X. { 0 } ) } ) ) |
| 46 |
|
ovex |
|- ( NN0 ^m I ) e. _V |
| 47 |
46
|
rabex |
|- { h e. ( NN0 ^m I ) | h finSupp 0 } e. _V |
| 48 |
|
breq1 |
|- ( h = ( I X. { 0 } ) -> ( h finSupp 0 <-> ( I X. { 0 } ) finSupp 0 ) ) |
| 49 |
|
nn0ex |
|- NN0 e. _V |
| 50 |
49
|
a1i |
|- ( ph -> NN0 e. _V ) |
| 51 |
|
c0ex |
|- 0 e. _V |
| 52 |
51
|
fconst |
|- ( I X. { 0 } ) : I --> { 0 } |
| 53 |
52
|
a1i |
|- ( ph -> ( I X. { 0 } ) : I --> { 0 } ) |
| 54 |
|
0nn0 |
|- 0 e. NN0 |
| 55 |
54
|
a1i |
|- ( ph -> 0 e. NN0 ) |
| 56 |
55
|
snssd |
|- ( ph -> { 0 } C_ NN0 ) |
| 57 |
53 56
|
fssd |
|- ( ph -> ( I X. { 0 } ) : I --> NN0 ) |
| 58 |
50 1 57
|
elmapdd |
|- ( ph -> ( I X. { 0 } ) e. ( NN0 ^m I ) ) |
| 59 |
|
0zd |
|- ( ph -> 0 e. ZZ ) |
| 60 |
1 59
|
fczfsuppd |
|- ( ph -> ( I X. { 0 } ) finSupp 0 ) |
| 61 |
48 58 60
|
elrabd |
|- ( ph -> ( I X. { 0 } ) e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) |
| 62 |
|
indsn |
|- ( ( { h e. ( NN0 ^m I ) | h finSupp 0 } e. _V /\ ( I X. { 0 } ) e. { h e. ( NN0 ^m I ) | h finSupp 0 } ) -> ( ( _Ind ` { h e. ( NN0 ^m I ) | h finSupp 0 } ) ` { ( I X. { 0 } ) } ) = ( f e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> if ( f = ( I X. { 0 } ) , 1 , 0 ) ) ) |
| 63 |
47 61 62
|
sylancr |
|- ( ph -> ( ( _Ind ` { h e. ( NN0 ^m I ) | h finSupp 0 } ) ` { ( I X. { 0 } ) } ) = ( f e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> if ( f = ( I X. { 0 } ) , 1 , 0 ) ) ) |
| 64 |
45 63
|
eqtrd |
|- ( ph -> ( ( _Ind ` { h e. ( NN0 ^m I ) | h finSupp 0 } ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = 0 } ) ) = ( f e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> if ( f = ( I X. { 0 } ) , 1 , 0 ) ) ) |
| 65 |
12
|
zrhrhm |
|- ( R e. Ring -> ( ZRHom ` R ) e. ( ZZring RingHom R ) ) |
| 66 |
|
zringbas |
|- ZZ = ( Base ` ZZring ) |
| 67 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 68 |
66 67
|
rhmf |
|- ( ( ZRHom ` R ) e. ( ZZring RingHom R ) -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
| 69 |
2 65 68
|
3syl |
|- ( ph -> ( ZRHom ` R ) : ZZ --> ( Base ` R ) ) |
| 70 |
69
|
feqmptd |
|- ( ph -> ( ZRHom ` R ) = ( z e. ZZ |-> ( ( ZRHom ` R ) ` z ) ) ) |
| 71 |
|
fveq2 |
|- ( z = if ( f = ( I X. { 0 } ) , 1 , 0 ) -> ( ( ZRHom ` R ) ` z ) = ( ( ZRHom ` R ) ` if ( f = ( I X. { 0 } ) , 1 , 0 ) ) ) |
| 72 |
25 64 70 71
|
fmptco |
|- ( ph -> ( ( ZRHom ` R ) o. ( ( _Ind ` { h e. ( NN0 ^m I ) | h finSupp 0 } ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = 0 } ) ) ) = ( f e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> ( ( ZRHom ` R ) ` if ( f = ( I X. { 0 } ) , 1 , 0 ) ) ) ) |
| 73 |
|
eqid |
|- ( I mPoly R ) = ( I mPoly R ) |
| 74 |
4
|
psrbasfsupp |
|- { h e. ( NN0 ^m I ) | h finSupp 0 } = { h e. ( NN0 ^m I ) | ( `' h " NN ) e. Fin } |
| 75 |
73 74 16 13 3 1 2
|
mpl1 |
|- ( ph -> U = ( f e. { h e. ( NN0 ^m I ) | h finSupp 0 } |-> if ( f = ( I X. { 0 } ) , ( 1r ` R ) , ( 0g ` R ) ) ) ) |
| 76 |
22 72 75
|
3eqtr4d |
|- ( ph -> ( ( ZRHom ` R ) o. ( ( _Ind ` { h e. ( NN0 ^m I ) | h finSupp 0 } ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = 0 } ) ) ) = U ) |
| 77 |
10 76
|
sylan9eqr |
|- ( ( ph /\ k = 0 ) -> ( ( ZRHom ` R ) o. ( ( _Ind ` { h e. ( NN0 ^m I ) | h finSupp 0 } ) ` ( ( _Ind ` I ) " { c e. ~P I | ( # ` c ) = k } ) ) ) = U ) |
| 78 |
3
|
fvexi |
|- U e. _V |
| 79 |
78
|
a1i |
|- ( ph -> U e. _V ) |
| 80 |
5 77 55 79
|
fvmptd |
|- ( ph -> ( ( I eSymPoly R ) ` 0 ) = U ) |