| Step |
Hyp |
Ref |
Expression |
| 1 |
|
0ss |
|- (/) C_ O |
| 2 |
|
indval2 |
|- ( ( O e. V /\ (/) C_ O ) -> ( ( _Ind ` O ) ` (/) ) = ( ( (/) X. { 1 } ) u. ( ( O \ (/) ) X. { 0 } ) ) ) |
| 3 |
1 2
|
mpan2 |
|- ( O e. V -> ( ( _Ind ` O ) ` (/) ) = ( ( (/) X. { 1 } ) u. ( ( O \ (/) ) X. { 0 } ) ) ) |
| 4 |
|
0xp |
|- ( (/) X. { 1 } ) = (/) |
| 5 |
|
dif0 |
|- ( O \ (/) ) = O |
| 6 |
5
|
xpeq1i |
|- ( ( O \ (/) ) X. { 0 } ) = ( O X. { 0 } ) |
| 7 |
4 6
|
uneq12i |
|- ( ( (/) X. { 1 } ) u. ( ( O \ (/) ) X. { 0 } ) ) = ( (/) u. ( O X. { 0 } ) ) |
| 8 |
7
|
a1i |
|- ( O e. V -> ( ( (/) X. { 1 } ) u. ( ( O \ (/) ) X. { 0 } ) ) = ( (/) u. ( O X. { 0 } ) ) ) |
| 9 |
|
0un |
|- ( (/) u. ( O X. { 0 } ) ) = ( O X. { 0 } ) |
| 10 |
9
|
a1i |
|- ( O e. V -> ( (/) u. ( O X. { 0 } ) ) = ( O X. { 0 } ) ) |
| 11 |
3 8 10
|
3eqtrd |
|- ( O e. V -> ( ( _Ind ` O ) ` (/) ) = ( O X. { 0 } ) ) |