| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssid |
|- O C_ O |
| 2 |
|
indval2 |
|- ( ( O e. V /\ O C_ O ) -> ( ( _Ind ` O ) ` O ) = ( ( O X. { 1 } ) u. ( ( O \ O ) X. { 0 } ) ) ) |
| 3 |
1 2
|
mpan2 |
|- ( O e. V -> ( ( _Ind ` O ) ` O ) = ( ( O X. { 1 } ) u. ( ( O \ O ) X. { 0 } ) ) ) |
| 4 |
|
difid |
|- ( O \ O ) = (/) |
| 5 |
4
|
xpeq1i |
|- ( ( O \ O ) X. { 0 } ) = ( (/) X. { 0 } ) |
| 6 |
|
0xp |
|- ( (/) X. { 0 } ) = (/) |
| 7 |
5 6
|
eqtri |
|- ( ( O \ O ) X. { 0 } ) = (/) |
| 8 |
7
|
a1i |
|- ( O e. V -> ( ( O \ O ) X. { 0 } ) = (/) ) |
| 9 |
8
|
uneq2d |
|- ( O e. V -> ( ( O X. { 1 } ) u. ( ( O \ O ) X. { 0 } ) ) = ( ( O X. { 1 } ) u. (/) ) ) |
| 10 |
|
un0 |
|- ( ( O X. { 1 } ) u. (/) ) = ( O X. { 1 } ) |
| 11 |
10
|
a1i |
|- ( O e. V -> ( ( O X. { 1 } ) u. (/) ) = ( O X. { 1 } ) ) |
| 12 |
3 9 11
|
3eqtrd |
|- ( O e. V -> ( ( _Ind ` O ) ` O ) = ( O X. { 1 } ) ) |