Metamath Proof Explorer


Theorem indconst1

Description: Indicator of the whole set. (Contributed by Thierry Arnoux, 25-Jan-2026)

Ref Expression
Assertion indconst1 ( 𝑂𝑉 → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑂 ) = ( 𝑂 × { 1 } ) )

Proof

Step Hyp Ref Expression
1 ssid 𝑂𝑂
2 indval2 ( ( 𝑂𝑉𝑂𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑂 ) = ( ( 𝑂 × { 1 } ) ∪ ( ( 𝑂𝑂 ) × { 0 } ) ) )
3 1 2 mpan2 ( 𝑂𝑉 → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑂 ) = ( ( 𝑂 × { 1 } ) ∪ ( ( 𝑂𝑂 ) × { 0 } ) ) )
4 difid ( 𝑂𝑂 ) = ∅
5 4 xpeq1i ( ( 𝑂𝑂 ) × { 0 } ) = ( ∅ × { 0 } )
6 0xp ( ∅ × { 0 } ) = ∅
7 5 6 eqtri ( ( 𝑂𝑂 ) × { 0 } ) = ∅
8 7 a1i ( 𝑂𝑉 → ( ( 𝑂𝑂 ) × { 0 } ) = ∅ )
9 8 uneq2d ( 𝑂𝑉 → ( ( 𝑂 × { 1 } ) ∪ ( ( 𝑂𝑂 ) × { 0 } ) ) = ( ( 𝑂 × { 1 } ) ∪ ∅ ) )
10 un0 ( ( 𝑂 × { 1 } ) ∪ ∅ ) = ( 𝑂 × { 1 } )
11 10 a1i ( 𝑂𝑉 → ( ( 𝑂 × { 1 } ) ∪ ∅ ) = ( 𝑂 × { 1 } ) )
12 3 9 11 3eqtrd ( 𝑂𝑉 → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑂 ) = ( 𝑂 × { 1 } ) )