| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssid |
⊢ 𝑂 ⊆ 𝑂 |
| 2 |
|
indval2 |
⊢ ( ( 𝑂 ∈ 𝑉 ∧ 𝑂 ⊆ 𝑂 ) → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑂 ) = ( ( 𝑂 × { 1 } ) ∪ ( ( 𝑂 ∖ 𝑂 ) × { 0 } ) ) ) |
| 3 |
1 2
|
mpan2 |
⊢ ( 𝑂 ∈ 𝑉 → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑂 ) = ( ( 𝑂 × { 1 } ) ∪ ( ( 𝑂 ∖ 𝑂 ) × { 0 } ) ) ) |
| 4 |
|
difid |
⊢ ( 𝑂 ∖ 𝑂 ) = ∅ |
| 5 |
4
|
xpeq1i |
⊢ ( ( 𝑂 ∖ 𝑂 ) × { 0 } ) = ( ∅ × { 0 } ) |
| 6 |
|
0xp |
⊢ ( ∅ × { 0 } ) = ∅ |
| 7 |
5 6
|
eqtri |
⊢ ( ( 𝑂 ∖ 𝑂 ) × { 0 } ) = ∅ |
| 8 |
7
|
a1i |
⊢ ( 𝑂 ∈ 𝑉 → ( ( 𝑂 ∖ 𝑂 ) × { 0 } ) = ∅ ) |
| 9 |
8
|
uneq2d |
⊢ ( 𝑂 ∈ 𝑉 → ( ( 𝑂 × { 1 } ) ∪ ( ( 𝑂 ∖ 𝑂 ) × { 0 } ) ) = ( ( 𝑂 × { 1 } ) ∪ ∅ ) ) |
| 10 |
|
un0 |
⊢ ( ( 𝑂 × { 1 } ) ∪ ∅ ) = ( 𝑂 × { 1 } ) |
| 11 |
10
|
a1i |
⊢ ( 𝑂 ∈ 𝑉 → ( ( 𝑂 × { 1 } ) ∪ ∅ ) = ( 𝑂 × { 1 } ) ) |
| 12 |
3 9 11
|
3eqtrd |
⊢ ( 𝑂 ∈ 𝑉 → ( ( 𝟭 ‘ 𝑂 ) ‘ 𝑂 ) = ( 𝑂 × { 1 } ) ) |